3.2.1.3.3.2. Основные причины ускоренной эрозии
1. Неверные методы земледелия (введение монокультур, неправильное орошение и обработка почвы);
2. Перевыпас животных (пастбищная эрозия - рассматривалась выше);
3. Сведение лесов (леса регулируют поверхностный и подземный сток, химический состав почвы - наличие солей и детрита, определяют климатические условия, включая воздействие ветра).
3.2.1.3.3.3. Предупреждение эрозии почвы
С этой целью проводятся зональные и межзональные мероприятия, включающие: агротехнические, гидротехнические и организационно-хозяйственные. Примеры: соблюдение севооборотов (пропашные культуры, например, кукуруза, картофель, должны сменяться посевами, скрепляющими почву корнями, например травосмесями), проведение контурной вспашки (по горизонталям рельефа), использование техники с малым удельным давлением на почву, создание полезащитных полос, разумная химизация (биологическая защита культур вместо использования пестицидов, селекция) и орошение земель, умеренные нагрузки в агроэкосистемах, регулирование выпаса животных и другие направления.
В заключение необходимо отметить, что самоочистка и естественное восстановление почвенного покрова на нашей планете протекают очень медленно по сравнению с самоочисткой атмосферы и гидросферы.
3.2.2. Главные направления защиты земельного фонда
1. Максимально полное и комплексное извлечение всех полезных компонентов из природных месторождений (меньше отходов, отвалов);
2. Экономное использование сырья и топлива;
3. Разработка экологически чистых источников энергии;
4. Глубокая очистка отходов от токсичных веществ;
5. Разработка безотходных технологий и создание предприятий, работающих по замкнутому циклу (например, из навоза получают биогаз);
6. Воссоздание лесов;
7. Рациональное использование сельскохозяйственных земель;
8. Рекультивация (восстановление и повторное использование земель в местах добычи полезных ископаемых).
3.3. Атмосфера Земли и глобальные проблемы
3.3.1. Общая характеристика атмосферы
Атмосфера - внешняя, газоподобная оболочка планеты, которая, с одной стороны, непосредственно прилегает к земной поверхности, а, с другой стороны, постепенно переходит в космический вакуум.
Важнейшие функции атмосферы:
1) она является необходимым источником, обеспечивающим жизнь в биосфере (определяет климат на планете, ускоряет процессы кругооборота веществ и самоочистки в биосфере и др.);
2) подобно “чехлу” защищает живые организмы на нашей планете от пагубного влияния космического излучения.
Масса атмосферы составляет около 5,9×1015 т.
Атмосфера имеет слоистое строение, то есть состоит из нескольких сфер, между которыми располагаются переходные слои - паузы. В сферах изменяется химический состав, температура и давление.
3.3.2.1. Тропосфера и состав воздуха
Наиболее плотный слой воздуха, прилегающий к земной поверхности, - это тропосфера. Толщина ее изменяется так: в средних широтах (до 10-14 км) над уровнем моря, на полюсах - (до 7-10 км), над экватором - (до 16-18 км). При этом среднее значение (примерно 11-13 км). Масса тропосферы составляет 4/5 от всей массы атмосферы. Средний состав атмосферного воздуха представлен в табл.3.2.
Таблица 3.2. Состав сухого атмосферного воздуха у земной поверхности
Компоненты | Содержание, в объем. % | Компоненты | Содержание, в объем. % |
Азот ( N2 ) | 78,09 | Оксид азота ( NO ) | 2,5×10-4 |
Кислород ( О2 ) | 20,94 | Метан ( СН4 ) | 1,5×10-4 |
Аргон ( Ar ) | 0,93 | Диоксид азота ( NO2 ) | 1,5×10-4 |
Углекислый газ (СО2) | О,034-0,035 | Диоксид серы ( SO2 ) | 1×10-4 |
Неон ( Ne ) | 1,8×10-3 | Водород ( Н2 ) | 5×10-5 |
Гелий ( Не ) | 5,2×10-4 | Угарный газ ( СО ) | 10-5 |
Криптон ( Kr ) | 1×10-4 | Озон ( О3 ) | 2×10-6 |
Ксенон ( Хе ) | 8×10-6 | Аммиак ( NH3 ) | 10-6 |
Другие составляющие воздуха: водяной пар, пыль, сажа и иные загрязнители, включая антропогенные. Наиболее в широких пределах изменяется содержание в воздухе водяного пара и пыли, что зависит от множества причин. При этом содержание водяного пара значительно убывает с высотой от поверхности Земли. В результате испарения воды с земной поверхности (особенно с Мирового океана) и в результате процессов конденсации образуются облака и затем выпадают осадки. Большая часть облачности присутствует в тропосфере (особенно на высоте до 1,5-2,5 км от поверхности Земли). Примерно 50 % всей земной поверхности закрыто облаками. Главный источник тепла на Земле - солнечная энергия, но тропосфера в основном нагревается от Земли (отдается накопленная энергия). При этом нельзя не учитывать процессы рассеивания солнечной энергии, а также задержку тепла в приземном слое особенно из-за антропогенных выбросов СО2, создающих парниковый эффект, что в целом приводит к увеличению доли инфракрасного (теплового) излучения в тропосфере. Температура же в приземном слое колеблется в пределах примерно от (+500С) до (-500С). В целом с удалением от поверхности Земли температура в пределах тропосферы уменьшается примерно на 0,5-0,6 градуса на каждые 100 метров. С высотой разряжение воздуха возрастает, а атмосферное давление уменьшается. Ветровые потоки в тропосфере очень разнообразны.
Выше тропосферы находится тропопауза (так, тропическая на высоте 16-18 км, а полярная на высоте 9-10 км от земной поверхности). В тропопаузе нет столь разнообразных ветровых потоков как в тропосфере и температура практически постоянна. Тропопауза как бы защищает биосферу от чрезмерных потерь тепла в космическое пространство.
3.3.2.2. Стратосфера и защитный “озонный слой”
В следующем слое (стратосфере) с высотой концентрация воздуха в целом продолжает уменьшаться, но при этом начинает увеличиваться концентрация озона О3 (это так называемый “озонный экран”), который располагается у полюсов с высоты примерно 9 км, а у экватора – на расстоянии 18 км от земной поверхности. Максимума содержание озона достигает приблизительно на высоте 22-25 км (концентрация озона уровня 0,01-0,06 мг/м3, то есть на несколько порядков выше, чем в тропосфере). Однако, если содержащийся в границах экрана озон выделить в чистом виде, то слой его составит 3-5 мм. Содержание озона выражается в сантиметрах (0,3-0,5) или в единицах Допсона (миллиметры, увеличенные в 100 раз - 300-500 ед.). Из-за наличия “озонного экрана” стратосферу часто называют озоносферой. Главная роль стратосферы (благодаря “озонному экрану”) - это защита биосферы от жесткого ультрафиолетового излучения.
В 1930 году английский геофизик С. Чепмен для объяснения постоянной концентрации озона в стратосфере предложил схему (из четырех реакций), известную нам сейчас под названием - цикл Чепмена:
hn
1) О2 ® 2О (при действии ультрафиолетового излучения с l<242 мкм);
2) О + О2 + М ® О3 + М;
3) О + О3 + К ® 2 О2 + К;
hn
4) О3 ® О2 + О (защита от ультрафиолетового излучения, происходит поглощение в области l = 240-320 мкм).
Первая и четвертая реакции по механизму - фотохимические (протекают под действием солнечной радиации), вторая и особенно третья реакции по механизму - каталитические. Так, в третьей реакции роль катализатора К может выполнять оксид азота NO, который образуется под действием жесткого солнечного излучения, а также при грозовых разрядах и при антропогенных выбросах (например, выбросы из двигателей реактивных самолетов в стратосфере). Упрощенно механизм катализа может быть представлен следующими реакциями: