Смекни!
smekni.com

Водосборсная плотина в составе низкого напорного гидроузла (стр. 5 из 7)

Принимаем также, что максимальное значение фильтрационного противодавления действует на плиту до второго ряда дренажных отверстий.

Сила фильтрационного противодавления находиться по формуле:

В курсовом проекте проводим проверку устойчивости водобойной плиты:

1. на всплытие;

2. на опрокидывание;

3. на сдвиг.

Условие устойчивости плиты принимаем в виде:

где

- действительное значение коэффициента устойчивости плиты;

- нормативное значение коэффициента устойчивости плиты.

2.7.3.Расчет устойчивости водобойной плиты на опрокидывание:

Расчет ведем в предположении, что опрокидывание произойдет относительно нижнего ребра низовой грани плиты.

В целях экономии, целесообразно уменьшите толщину водобойной плиты. Пусть

, тогда:


Вывод: устойчивость водобойной плиты на опрокидывание обеспечена, экономические затраты будут минимальные.

2.8 Конструирование рисбермы и концевого крепления

За водобоем располагаются рисберма и концевое крепление.

Рисберма – это участок крепления русла расположенный за водобоем. На рисберме происходит уменьшение осредненных скоростей и пульсации скоростей. Рисберму выполняют в виде крепления, постепенно облегчающегося по течению. Обычно крепление устраивают из бетонных плит. Толщину плиты в начале рисбермы принимаем равной двум третям от толщины водобоя. Следующая плита рисбермы будет составлять две третьих от предыдущей.

Концевой участок рисбермы заглубляют с уклоном

, в результате чего образуется ковш, предназначенный для защиты рисбермы от подмыва. За счет отсыпки в ковш камня уменьшаем его глубину.

2.8.1 Определение длины крепления русла:

Бетонное крепление русла необходимо на длине прыжка и на длине послепрыжкового участка. В пределах послепрыжкового участка происходит переход скоростей и давления от величин, соответствующих концу гидравлического прыжка, до величин, соответствующих бытовым условиям.


В курсовом проекте рассчитываем длину крепления русла по формуле:

2.8.2. Конструирование рисбермы:

Спроектируем плиты горизонтального участка рисбермы:

1) первая плита:

;

2) вторая плита:

;

;

3) третья плита:

;

;

Заложение верхового откоса ковша принимаем

. Плиты крепления ковша сборные, с размером 4х4х1 м.

Глава 3. Конструирование подземного контура и фильтрационные расчеты

Подземный контур проектируется в целях уменьшения фильтра-ционного противодавления на плотину, уменьшения фильтрационных потерь из водохранилища, обеспечения фильтрационной прочности грунтов основания. Расчеты фильтрации производим при максимальном статическом напоре на сооружение:

3.1 Конструирование подземного контура

В нашем случае грунтом основания служит песок с галькой и гравием. Конструктивным решение в борьбе с фильтрацией, при залегании водоупора на глубине 2,73 м, будет являться продолжения зуба.

При песчаном основании применяем анкерный понур длиной

. Он предназначен не только для снижения противодавления, но и для восприятия части силы, сдвигающей плотину. Он представляет собой ж/б плиту с толщиной 0,5 м, арматура которого соединена с арматурой ФП плотины. Водонепроницаемость ж/б плиты обеспечивается гидроизоляцией ее поверхности и слоем глинистого грунта. Узел сопряжения понура с плотиной выполняется в виде гибкой конструкции, воспринимающей разность осадок понура и плотины без нарушения его водонепроницаемости. Глиняная пригрузка понура защищается бетонным покрытием, выполняющим роль строительной площади.

Наиболее действенной мерой по уменьшению фильтрационного противодавления является дренаж. В нашем случае устраиваем горизонтальный дренаж – под подошвой плотины и водобойной плитой. В состав дренажной системы входят: дренажный слой, обратный фильтр и система сбора воды.

3.2 Определение фильтрационного противодавления на подошву плотины

Построение эпюры фильтрационного противодавления производим методом коэффициентов сопротивления (гидравлический метод). Он основан на аналогии протекания фильтрационного потока в водопроницаемом основании и движении жидкости в трубе с набором местных сопротивлений.

Все элементы подземного контура плотины могут быть представлены в виде местных сопротивлений. В этом методе рассматриваем фильтрацию только вдоль подземного контура. При этом принимаем, что она происходит равномерно (с одинаковыми скоростями), а потери напора на вход и на выход эквивалентны потерям напора по длине

.

Величину падения напора на i-ом участке подземного контура определяем по формуле:

Для входа и выхода:

Для горизонтального участка

,
,

Величину фильтрационного расхода и выходного градиента определяем по формулам:

Полный фильтрационной расход под подошвой плотины:

После конструирования подземного контура мы проверяем его на возможность нарушения фильтрационной прочности грунта основания. По СНиП критерием обеспечения общей фильтрационной прочности нескального основания является условие:

- расчетное значение осредненного критического градиента напора для глины.

- условие выполняется.

Глава 4. Статические расчеты секции водосливной плотины

Статические расчеты позволяют проверить, обеспечивается ли работоспособность выбранного профиля плотины по одной группе предельных состояний:

1.по потери несущей способности основания и устойчивости сооружения;

В данном курсовом проекте мы решаем только две задачи:

1. обеспечение устойчивости секции плотины на сдвиг;

2. обеспечение допустимой неравномерности распределения вертикальных

напряжений

под подошвой фундамента (контактные напряжения), а следовательно осадок.

При этом производим расчет только для одного расчетного случая основного сочетания нагрузок эксплуатационного периода – при максимальном статическом напоре на сооружение.

Расчеты проводим для одной секции плотины с максимальным количеством пролетов.

4.1 Сбор действующих нагрузок.

В соответствии с РД 31.31.55-93

Сила Выражение Значение кН Плечо, м Моменты,
+
1
62559 0,87 54,43
2
48551 0,79 38,36
3
24983 9,45 206,11
4
2947 10,74 31,65
5
15639 1,61 25,19
6
-42906 0,44 18,88
7
-5410 9,51 51,45
8
24503 9,6 235,23
9
22698 0,22 4,99
10
-11350 0,01 0,01
11
1922 1,12 2,15