Смекни!
smekni.com

Нефтеперерабатывающая и нефтехимическая промышленность (стр. 3 из 7)

В общем виде процесс действия ионообменного фильтра для снижения жесткости воды следующий:

Временная жесткость

2[Kat]Na + Ca(HCO3)2® [Kat]2Ca + 2NaHCO3

2[Kat]Na + Mg(HCO3)2® [Kat]2Mg + 2NaHCO3

Постоянная жесткость

2[Kat]Na + CaCl2® [Kat]2Ca + 2NaCl

2[Kat]Na + CaSO4® [Kat]2Ca + Na2SO4

2[Kat]Na +MgSO4®[Kat]2Mg + Na2SO4

R- = Kat

Для восстановления рабочей обменной емкости катионита необходимо извлечь из него задержанные катионы, заменив их обменными катионами. Процесс восстановления обменной емкости истощенного катионита называется его регенерацией. Регенерация истощенного натрий-катионита достигается фильтрованием через его слой раствора поваренной соли (NaCl). Вследствие относительно большой концентрации катионов натрия в регенерационном растворе происходит замена ими поглощенных ранее катионов кальция и магния. Протекающие при этом реакции могут быть выражены следующими уравнениями:

Са2+ :
+ 2NaCl → 2Na+ : R- + СаCl2
(1.6)
Mg2+ :
+ 2Na Cl → 2Na+ : R- + MgCl2
(1.7)

Поваренная соль применяется для регенерации в основном вследствие ее доступности, а так же вследствие того, что получающиеся при этом хорошо растворимые СаCl2 и MgCl2 легко удаляются с регенерационным раствором и отмывочной водой. В процессе регенерации при фильтровании раствора NaCl сверху вниз через истощенный катионит наиболее полный объем катиона натрия на содержащиеся в катионите катионы кальция и магния происходит в верхних слоях загрузки фильтра. При пропускании через фильтр раствора NaCl в последнем возрастает концентрация вытесняемых из катионита катионов Ca2+ и Mg2+ и снижается концентрация катионов Na+.

Увеличение концентрации противоионов (Ca2+ и Mg2+) в регенерационном

КП.240401.617.06.ПЗ Лист 14 Изм. Лист докум. Подп. Дата

растворе подавляет диссоциацию истощенного катионита и ослабляет процесс ионного обмена. Возникающий при этом противоионный эффект тормозит реакцию регенерации, в результате чего по мере движения регенерирующего раствора в нижние слои катионита регенерация последнего протекает менее полно и некоторое количество катионов Ca2+ и Mg2+ остается не вытесненным из нижних слоев катионита. Для устранения этого недостатка можно пропустить через катионит все новые свежие порции раствора реагента. Но это вызовет значительное увеличение удельного расхода поваренной соли и повышение стоимости обработки воды. Поэтому ограничиваются однократным пропуском регенерационного раствора с количеством соли, превышающим в 3,0-3,5 раза стехиометрический расход, что обеспечивает относительно удовлетворительную регенерацию катионита.

При пропускании через такой отрегенерированный фильтр сверху вниз умягчаемой жесткой воды, содержащей катионы Ca2+ и Mg2+, она сначала проходит в соприкосновение с наиболее хорошо отрегенерированными слоями катионита, молекулы которого содержат в своей атмосфере почти исключительно катионы натрия. Поэтому в верхних слоях катионита катионный обмен протекает достаточно полно и умягчаемая вода содержит минимальное остаточное количество катионов Ca2+ и Mg2+. Однако по мере продвижения в нижние слоя натрий-катионита умягчаемая вода в результате обменных реакций обогащается катионами натрия. В этих условиях в результате противоионного эффекта процесс умягчения воды тормозится, и некоторое количество катионов кальция и магния остается в умягченной воде, которая в следствии этого имеет некоторую остаточную жесткость. Этот противоионный эффект, мало ощутимый для мягких вод, становится заметным препятствием для глубокого умягчения сильно минерализованных вод, у которых вследствие замены катионов кальция и магния катионитами натрия создаются высокие концентрации этого противоиона, снижающие эффект умягчения воды.

Следовательно, как полнота регенерации катионита снижается по направлению движения регенерационного раствора, так снижается и глубина умягченной воды, фильтруемой в том же направлении. Если же регенерационный раствор и умягченную воду пропустить в разных направлениях, последняя перед выходом из фильтра соприкасается с наиболее хорошо отрегенерированными слоями катионита, благодаря чему обеспечивается более глубокое умягчение воды. Такой метод противоточного реагентов на регенерацию катионита, приближаясь к стехиометрическим соотношениям обменивающихся катионитов, не снижая при этом глубины умягчения воды.

КП.240401.617.06.ПЗ Лист 15 Изм. Лист докум. Подп. Дата

1.4 Описание процесса

1.4.1Получение осветленной воды

Речная вода с ОАО ОНПЗ «Сибнефть-Омский» поступает на отделение Е-7 по водоводу Æ 600 мм. Учет ведется по прибору типа «Данфос». Давление поступающей воды 4-4,5 кгс/см2, температура 7 оС зимой, 20 оС летом.Подача воды осуществляется в смеситель поз. 121,2. Уровень в смесителе поддерживается автоматически регулятором уровня поз. 5021,2. Клапан регулятора уровня установлен на трубопроводе подачи речной воды в смеситель. Заградительные сетки, установленные в верхней части смесителя, улавливают посторонние предметы в виде щепы и мусора.

В смесителе осуществляется полное смешение воды с коагулянтом и флокулянтом перед подачей в осветлители. В качестве коагулянта используется алюмохлорид (отход производства цехов гр. «И») или оксихлорид алюминия закупаемый у иногородних производителей.

В качестве флокулянта используется «Праестол-650», который применяется в процессе коагуляции для интенсификации осаждения твердых частиц. Коагулянты применяются для ускорения процессов осаждения примесей воды т.е. происходит процесс укрупнения мельчайших коллоидных частиц, коагуляция завершается образованием видимых хлопьев и отделением их от жидкой фазы.

После полного смешения с коагулянтом и флокулянтом вода поступает в осветлители поз. 131-12. Коллектор воды расположен над осветлителями, откуда вода поступает в их нижнюю часть в перфорированные трубы. Через отверстия перфорированных труб вода заполняет осветлитель. Скорость восходящего потока воды 2,2 м/сек. На высоте 2-4 метров в рабочей камере образуется слой взвешенного осадка (видимых хлопьев). Вода, проходя через него, очищается от частиц взвеси, увеличивая при этом объем осадка, избыток которого отводится через осадко-приемные окна в шламо уплотнительные камеры.

Вода прошедшая через слой взвешенного осадка, осветленная и очищенная от взвеси поступает в лоток через сборные желоба затем в резервуар, а далее насосами поз. 11-4, потребителям.

По мере накопления шлама в осветлителях производят отвод шлама в систему канализации. Прием воды в осветлитель прекращают, закрыв запорную арматуру на входе.

Продувка шламо уплотнительных камер ведется одновременно.

Контроль продувки ведется визуально, до чистой воды.

Предусмотрена подача речной воды, минуя осветлители в резервуар, на период вынужденного ремонта смесителей или других ситуаций.

В зависимости от качества речной воды от её температуры (зима, лето) определяется доза и количество подаваемого для коагуляции реагента (алюмохлорида, оксихлорида алюминия, полиоксихлорида алюминия марка Аква-Аурат ТМ-30). Качество осветленной воды анализируется в соответствие с планом аналитического контроля. Отбор проб осветленной воды производится

КП.240401.617.06.ПЗ Лист 16 Изм. Лист докум. Подп. Дата

из напорного коллектора на входе в отделение Е-3.

Порядок подготовки раствора флокулянта

Флокулянты применяются для интенсификации процесса коагуляции. В цехе в качестве флокулянта применяется «Праестол 650».

Рекомендуемая концентрация рабочего раствора 0,1-0,05 %. Рекомендуемая доза составляет 0,4-0,6 мг/л. Готовится раствор в баке поз. 8 куда набирается вода, подогревается вода паром или паровым конденсатом. Медленно рассыпается 1,5 кг. флокулянта в бак при постоянном перемешивании техническим воздухом.

Рабочий раствор подается в смеситель насосом поз. 25,7

Порядок подготовки раствора коагулянта

В качестве коагулянта применяется гидроксохлористый алюминий (ГХА) (отход производства цехов гр. «И») и оксихлорид алюминия (ОХА). Различие коагулянтов в том, что в условиях низких температур ГХА не работает. В качестве коагулянта также применяют Аква-Аурат ТМ-30.