Смекни!
smekni.com

Основи гідравліки (стр. 15 из 19)


9 Гідромашини

Машиною в загальноприйнятому значенні цього слова називають пристрій, що виконує механічні рухи з метою перетворення енергії, матеріалів чи інформації. Машини, робочим тілом яких є крапельні рідини, називають гідравлічними. В свою чергу, гідромашини розділяють на насоси і гідродвигуни.

Насосом називають гідромашину, яка перетворює механічну енергію приводного двигуна в кінетичну і потенціальну енергію потоку робочої рідини.

Гідродвигун – це гідромашина, в якій енергія потоку робочої сили перетворюється в механічну роботу.

За принципом дії всі гідромашини поділять на динамічні та об’ємні.

В динамічних гідромашинах силова взаємодія між ротором /робочим колесом/ і потоком рідини здійснюється в проточній камері, яка постійно сполучена зі входом потоку в гідромашину і виходом з неї. В результаті цієї взаємодії змінюється в основному кінетична енергія рідини.

В об’ємних гідромашинах взаємообмін енергією між потоком рідини і робочими органами машини відбувається при навперемінному заповненні робочої камери рідиною і витисненні її з робочої камери. При цій взаємодії відбувається в основному зміна потенціальної енергії рідини.

В даному курсі з динамічних гідромашин розглядаються відцентрові лопатеві насоси, які найбільше поширені в мережах водопостачання, а також основні типи об’ємних насосів і гідродвигунів.

9.1 Відцентрові, лопатеві

9.1.1 Принцип дії лопатевого насоса

Схема відцентрового лопатевого насоса показана на рис. 9.1 . Головною частиною насоса є робоче колесо 2, яке складається з фасонних дисків „а” і „б”, з’єднаних між собою профільованими лопатками „в”. Диски і лопатки утворюють проточну камеру насоса. Рідина з усмоктувального патрубка 1 надходить в центральну частину робочого колеса 2. Під дією відцентрових сил, що виникають в результаті силової дії лопаток колеса на рідину, вона переміщується в міжлопатевих каналах від цента до периферії і потрапляє в спіральний видвід 3, з якого подається в напірний патрубок 4 і далі в напірний трубопровід. Спіральний відвід призначений не тільки для уловлювання рідини, що виходить з робочого колеса, але і для часткового перетворення її кінетичної енергії в потенціальну енергію тиску.

Рис. 9.1. Схема відцентрового насосу консольного типу: 1 – підвід рідини; 2 – робоче колесо (а – ведучий диск, б – ведений диск, в – лопатки колеса); 3 – спіральний відвід; 4 – напірний патрубок; 5 – кромка спірального відводу

9.1.2 Основні технічні і експлуатаційні показники відцентрових насосів

Робота насоса характеризується його подачею, напором, споживаною потужністю і частотою обертання робочого колеса.

Подачею насоса називається витрата рідини через напірний (вихідний) патрубок. Так само як і витрата, подача може бути об’ємною (Q, м/с3) і масовою (М, кг/с).

Напір насоса Нн – різниця питомих енергій потоку при виході з насоса і на вході до нього, виражена в метрах стовпа рідини, яку подає насос:

.
(9.1)

В деяких випадках замість напору використовують тиск насоса:

.
(9.2)

Потужністю насоса (потужність, що споживає насос) називається енергія, яка підводиться до нього від приводного двигуна за одиницю часу:

,
(9.3)

де Мкр – крутний момент на валу насоса; ω – кутова швидкість обертання вала насоса.

Корисна потужність насоса Nk – це енергія, яку надає насос рідині, що проходить через нього за одиницю часу:

.
(9.4)

Відношення корисної потужності насоса до потужності, яку він споживає, називають коефіцієнтом корисної дії (ККД) насоса:

.
(9.5)

В свою чергу, ККД насоса є добутком трьох окремих ККД:

(9.6)

де h0 – об’ємний ККД, який враховує об’ємні втрати потужності в насосі (втрати внаслідок витікання рідин через щілини) і дорівнює відношенню дійсної подачі насоса до його ідеальної подачі:

(9.7)

hг – гідравлічний ККД, який враховує гідравлічні втрати потужності в насосі (втрати на долання гідравлічних опорів в насосі) і рівний відношенню напору насоса Нн до суми напору насоса і втрат напору в насосі (теоретичний напір):

(9.8)

hм – механічний ККД – враховує механічні втрати потужності в насосі (в підшипниках, ущільненнях в механізмі насоса та ін.):

;
(9.9)

Nмех – механічні втрати потужності в насосі.

Кавітаційний запас

Відцентрові насоси забезпечують широку область подач і тисків (напорів), але за умовами роботи на стороні усмоктування для них існують обмеження, причиною яких є можливість виникнення в певних зонах усмоктую чого тракту насоса особливого явища – кавітації. Суть кавітації полягає в утворенні розривів суцільності потоку (каверн) в тих місцях, де тиск знижується до величини тиску насиченої пари (рнп) при даній температурі рідини. Таке зниження тиску призводить до миттєвого скипання рідини і утворення великої кількості бульбочок, заповнених парою та розчиненими в рідині газами. Ці бульбочки переносяться потоком рідини до зон підвищеного тиску, де також майже миттєво руйнуються внаслідок конденсації пари і розчинення газів. Останнє супроводжується мікроскопічними гідроударами великої потужності, які поступово руйнують робоче колесо насоса.

Для порівняння кавітаційних якостей насосів користуються так званим кавітаційним запасом, тобто перевищенням повної питомої енергії потоку рідини на вході в насос над енергією, що відповідає тиску насиченої пари рідини:

(9.10)

де рвх – абсолютний тиск рідини на вході в насос; υвх – швидкість потоку рідини на вході в насос; рнп – тиск насиченої пари.

Кавітаційний запас, при якому починається кавітація, називається критичним. Стосовно до лопатевих насосів критичний кавітаційний запас підраховується за формулою С.С. Руднєва:

(9.11)

в якій n – частота обертання робочого колеса, об/хв.; Q – подача насоса, м3/с; С – кавітаційний коефіцієнт швидкості, який залежить від конструктивних особливостей насоса (для поширених конструкцій відцентрових насосів С=800...1000).

Допустимий кавітаційний запас – це кавітаційний запас, який гарантує роботу насоса без змін основних технічних показників, що зв’язані з виникненням в насосі кавітації:

(9.12)

Відцентрові лопатеві насоси мають обмеження стосовно висоти їх розташування над рівнем вільної поверхні рідини у витратному (приймальному) резервуарі, з якого насос усмоктує рідину. Ці обмеження обумовлені тиском на поверхні рідини в приймальному резервуарі, швидкістю потоку і величиною втрат енергії у всмоктуючому водопроводі, температурою і фізичними властивостями рідини, тобто факторами, від яких залежить виникнення кавітації на вході в насос.

Допустиму висоту всмоктування, при якій забезпечується робота насоса без зміни основних технічних показників, зв’язаних з виникненням явища кавітації, визначають за формулою:

(9.13)

де р0 - абсолютний тиск на поверхні витратного резервуара; рнп – величина тиску насиченої пари рідини; Shw.вс – сумарні втрати напору у всмоктуючому трубопроводі.

Характеристиками відцентрового насоса називають графічно зображені залежності напору, потужності, ККД, а інколи і допустимої висоти усмоктування, від подачі насоса при сталій частоті обертання робочого колеса. (рис.9.2).

Рис. 9.2

9.1.3 Насосна установка і її характеристика

Насос /група насосів/ з трубопроводами і відповідним комплектуючим обладнаням називається насосною установкою.

На рис 9.3 зображена напівконструктивна схема насосної установки. До насоса 7, який приводиться в дію електроприводом 6, вода надходить з приймального резервуара 1 по всмоктуючому трубопроводу 12. Насос нагнітає рідину в напірний резервуар 2 по напірному трубопроводу. На напірному трубопроводі є регулююча засувка 8, за допомогою якої можна змінювати подачу насоса. Інколи на напірній магістралі встановлюють зворотній клапан 10, який автоматично перекриває напірну магістраль при зупинці насоса. Якщо тиск в приймальному резервуарі відрізняється від атмосферного, або насос розташований нижче рівня рідини в приймальному резервуарі , то на всмоктуючому трубопроводі встановлюють монтажну засувку 11, яку перекривають при зупинці чи ремонті насоса. На вході у всмоктуючу магістраль передбачають запобіжну приймальну сітку 13 для запобігання засмічування насоса і зворотній клапан 14, що дає змогу залити насос і усмоктуючий трубопровід перед пуском. Робота насоса контролюється витратоміром 4, манометром 5, і мановакуумметром 9.