Смекни!
smekni.com

Основи гідравліки (стр. 18 из 19)

Гідроциліндр односторонньої дії має шток з поршнем, або плунжер, які переміщуються силою тиску, рідини тільки в одну сторону. Зворотний хід штока чи плунжера здійснюється під силою зовнішньої або пружини
/рис 9.14 а,б,д,е,/. Гідроциліндр двосторонньої дії має поршень з одно- або двостороннім штоком./рис. 9.14 в,г/. Робоча рідина підводиться навперемінно в обидві робочі порожнини, і рух штока в прямому і зворотному напрямах здійснюються тиском рідини.

Порожнину гідроциліндра, в якій переміщується шток, називають штоковою, а порожнину , де шток відсутній – поршневою.

В залежності від того, яка порожнина гідроциліндра з’єднана в даний момент з напірною гідролінією, а яка з лінією зливу рідини, їх відповідно поділяють на робочу і зливну.

Без урахування втрат, зусилля, яке розвиває шток гідроциліндра визначають за співвідношенням

,
(9.33)

в якому рр – тиск рідини в порожнині ; Se – ефективна площа поршня.

Теоретична швидкість переміщення поршня визначається за формулою

(9.34)

де Q – витрата робочої рідини, що находить гідроциліндр.

Рис. 9.14. Схеми гідроциліндрів: а, б – гідроциліндри односторонньої дії з одностороннім штоком; в – гідроциліндр двосторонньої дії з двостороннім штоком; г – гідроциліндр двосторонньої дії з двостороннім штоком; д – плунжерний; е – телескопічний гідроциліндр односторонньої дії

Ефективною площею поршня називають площу торця поршня, на яку діє тиск рідини. Так, з боку безштокової /поршневої / порожнини

, (D – діаметр поршня),

з боку штокової

, (dшт – діаметр штока),

Якщо врахувати об’ємні втрати , то дійсна швидкість переміщення поршня

.
(9.35)

Тоді витрата рідини робочою порожниною гідроциліндра

,
(9.36)

а витрата рідини, що витікає зі зливної порожнини

(9.37)

Для точного визначення величини зусилля на штоці гідроциліндра з урахуванням тертя, опору зливної лінії та інших протидіючих сил потрібно виходити з рівняння рівномірного прямолінійного руху поршня. В такому випадку дійсне зусилля, що розвиває шток гідроциліндра, визначається рівнянням

,
(9.38)

де

– механічний ККД гідроцилндра,
– сумарна сила протидії з боку зливної порожнини.

В частинному випадку, коли враховується тертя і опір рідини в зливній порожнині, будемо мати

.
(9.39)

В цій формулі рзл – тиск рідини в зливній порожнині; Sезл – ефективна площа поршня з боку зливної порожнини.

Слід відзначити, що ККД гідроциліндрів визначається в основному механічними втратами енергії на тертя, оскільки
.

9.2.3.3 Моментні гідроциліндри або поворотні гідродвигуни

Моментні гідроциліндри або поворотні гідродвигуни (рис.9.15) надають своїй вихідній ланці (валу) зворотно-поворотний рух необмежений кут.

В сучасній техніці поширені, в основному, пластинчасті поворотні гідродвигуни. Основними елементами пластинчастого поворотного гідро двигуна є корпус (циліндр) 3, в якому розміщена поворотна пластина 1, жорстко з’єднана з вихідним валом 2. Пластина ділить циліндр на дві порожнини, які по черзі з’єднуються з лінією високого тиску. Завдяки перепаду тисків в порожнинах циліндра пластина повертається разом з вихідним валом.

Рис. 9.15. Моментний гідроциліндр: 1 – поворотна пластина; 2 – вихідний вал; 3 – циліндр; р1 – тиск в робочому положенні; р2 – тиск у зливній порожнині

Витрату масла пластинчастим гідродвигуном з пластиною прямокутної форми визначають за формулою:

(9.40)

де R – зовнішній радіус пластини, м; r – радіус втулки пластини, м; b – ширина пластини, м; ωд – кутова швидкість вихідного вала, рад/с.

Корисний крутний момент на вихідному валу

(9.41)

Тут рр – тиск масла в робочій порожнині; рзв – тиск масла у зливній порожнині.

Крутний момент, який можуть розвивати моментні гідро циліндри досягає 2000...3000 Н·м.

При розрахунках моментних гідроциліндрів можна приймати

.

9.2.3.4 Шестеренчасті насоси і гідромотори

Характерною особливістю шестеренчастих гідромашин є простота їх конструкції, незначні габарити і вага. Частіше вони використовуються як насоси і менш як гідромотори.

Рис. 9.16. Шестеренчаста гідромашина: 1 – корпус; 2 – ведуча шестерня; 3 – ведена шестерня; 4 – торцеві диски; 5 – розвантажувальні канали

Найбільш поширений насос (рис.9.16) із зовнішнім зачепленням складається із корпуса 1, де з невеликими торцевими і радіальними зазорами знаходяться зачеплені дві однакові шестерні, з яких 2 – ведуча і 3 – ведена. При обертанні шестерень, коли зуби виходять із западин, відбувається всмоктування рідини. Далі рідина, яка заповнила западини, переноситься по зовнішній дузі в напрямі обертання шестерень. Коли зуби входять в западини, об’єм камери зменшується і рідина витискується в нагнітальну лінію.

Процес подачі рідини шестеренчастим насосом складний порівняно з насосом інших конструкцій. Тому розрахункові формули для визначення подачі насоса або витрати рідини гідромотором дають похибку від 5 до 30 %.

Середнє значення подачі насоса (витрата рідини гідромотором) підраховують за формулою:

(9.42)

в якій n – частота обертання шестерні, b – ширина шестерні, m – модуль зачеплення, z – число зубів ведучої шестерні.

Ця формула для поширених конструкцій з кількістю зубів 8...15 і з точністю 2...3% характеризує середню розрахункову подачу (витрату).

Розрахункове значення крутного моменту знаходять за формулою:

(9.43)

де

– перепад тиску, що спрацьовується в гідромоторі.

Розрахункова потужність насоса чи гідромотора :

(9.44)

У шестеренчастій гідромашині головну частину потужності, що втрачається, складають втрати на тертя. В середньому приймають

9.2.3.5 Пластинчасті насоси і гідромотори

Пластинчасті гідромашини – це роторні гідромашини з рухомими елементами у вигляді ротора, який здійснює обертальний рух, і пластин (шиберів), що обертаються разом з ротором і в той же час здійснюють зворотно-поступальний рух в пазах ротора.

Пластинчасті гідромашини бувають однократної і багатократної дії, одноступінчасті і багатоступінчасті.

Гідромашина (насос або гідромотор) однократної дії (рис.9.17) складається з ротора 1, вісь обертання якого, зміщена відносно осі статора 2 на величину ексцентриситету е. В пазах ротора встановлені пластини 3, які притискуються до внутрішньої поверхні статора або тиском рідини, або пружинами.

Для відокремлення усмоктуючої порожнини 5 від нагнітальної 6 в статорі передбачені ущільнювальні виступи І-ІІ і ІІІ-ІV. Ущільнення ротора з торців забезпечують диски 4.