Гідроциліндр односторонньої дії має шток з поршнем, або плунжер, які переміщуються силою тиску, рідини тільки в одну сторону. Зворотний хід штока чи плунжера здійснюється під силою зовнішньої або пружини
/рис 9.14 а,б,д,е,/. Гідроциліндр двосторонньої дії має поршень з одно- або двостороннім штоком./рис. 9.14 в,г/. Робоча рідина підводиться навперемінно в обидві робочі порожнини, і рух штока в прямому і зворотному напрямах здійснюються тиском рідини.
Порожнину гідроциліндра, в якій переміщується шток, називають штоковою, а порожнину , де шток відсутній – поршневою.
В залежності від того, яка порожнина гідроциліндра з’єднана в даний момент з напірною гідролінією, а яка з лінією зливу рідини, їх відповідно поділяють на робочу і зливну.
Без урахування втрат, зусилля, яке розвиває шток гідроциліндра визначають за співвідношенням
, | (9.33) |
в якому рр – тиск рідини в порожнині ; Se – ефективна площа поршня.
Теоретична швидкість переміщення поршня визначається за формулою
(9.34) |
де Q – витрата робочої рідини, що находить гідроциліндр.
Рис. 9.14. Схеми гідроциліндрів: а, б – гідроциліндри односторонньої дії з одностороннім штоком; в – гідроциліндр двосторонньої дії з двостороннім штоком; г – гідроциліндр двосторонньої дії з двостороннім штоком; д – плунжерний; е – телескопічний гідроциліндр односторонньої дії
Ефективною площею поршня називають площу торця поршня, на яку діє тиск рідини. Так, з боку безштокової /поршневої / порожнини
, (D – діаметр поршня), |
з боку штокової
, (dшт – діаметр штока), |
Якщо врахувати об’ємні втрати , то дійсна швидкість переміщення поршня
. | (9.35) |
Тоді витрата рідини робочою порожниною гідроциліндра
, | (9.36) |
а витрата рідини, що витікає зі зливної порожнини
(9.37) |
Для точного визначення величини зусилля на штоці гідроциліндра з урахуванням тертя, опору зливної лінії та інших протидіючих сил потрібно виходити з рівняння рівномірного прямолінійного руху поршня. В такому випадку дійсне зусилля, що розвиває шток гідроциліндра, визначається рівнянням
, | (9.38) |
де
– механічний ККД гідроцилндра, – сумарна сила протидії з боку зливної порожнини.В частинному випадку, коли враховується тертя і опір рідини в зливній порожнині, будемо мати
. | (9.39) |
В цій формулі рзл – тиск рідини в зливній порожнині; Sезл – ефективна площа поршня з боку зливної порожнини.
Слід відзначити, що ККД гідроциліндрів визначається в основному механічними втратами енергії на тертя, оскільки .9.2.3.3 Моментні гідроциліндри або поворотні гідродвигуни
Моментні гідроциліндри або поворотні гідродвигуни (рис.9.15) надають своїй вихідній ланці (валу) зворотно-поворотний рух необмежений кут.
В сучасній техніці поширені, в основному, пластинчасті поворотні гідродвигуни. Основними елементами пластинчастого поворотного гідро двигуна є корпус (циліндр) 3, в якому розміщена поворотна пластина 1, жорстко з’єднана з вихідним валом 2. Пластина ділить циліндр на дві порожнини, які по черзі з’єднуються з лінією високого тиску. Завдяки перепаду тисків в порожнинах циліндра пластина повертається разом з вихідним валом.
Рис. 9.15. Моментний гідроциліндр: 1 – поворотна пластина; 2 – вихідний вал; 3 – циліндр; р1 – тиск в робочому положенні; р2 – тиск у зливній порожнині
Витрату масла пластинчастим гідродвигуном з пластиною прямокутної форми визначають за формулою:
(9.40) |
де R – зовнішній радіус пластини, м; r – радіус втулки пластини, м; b – ширина пластини, м; ωд – кутова швидкість вихідного вала, рад/с.
Корисний крутний момент на вихідному валу
(9.41) |
Тут рр – тиск масла в робочій порожнині; рзв – тиск масла у зливній порожнині.
Крутний момент, який можуть розвивати моментні гідро циліндри досягає 2000...3000 Н·м.
При розрахунках моментних гідроциліндрів можна приймати
.9.2.3.4 Шестеренчасті насоси і гідромотори
Характерною особливістю шестеренчастих гідромашин є простота їх конструкції, незначні габарити і вага. Частіше вони використовуються як насоси і менш як гідромотори.
Рис. 9.16. Шестеренчаста гідромашина: 1 – корпус; 2 – ведуча шестерня; 3 – ведена шестерня; 4 – торцеві диски; 5 – розвантажувальні канали
Найбільш поширений насос (рис.9.16) із зовнішнім зачепленням складається із корпуса 1, де з невеликими торцевими і радіальними зазорами знаходяться зачеплені дві однакові шестерні, з яких 2 – ведуча і 3 – ведена. При обертанні шестерень, коли зуби виходять із западин, відбувається всмоктування рідини. Далі рідина, яка заповнила западини, переноситься по зовнішній дузі в напрямі обертання шестерень. Коли зуби входять в западини, об’єм камери зменшується і рідина витискується в нагнітальну лінію.
Процес подачі рідини шестеренчастим насосом складний порівняно з насосом інших конструкцій. Тому розрахункові формули для визначення подачі насоса або витрати рідини гідромотором дають похибку від 5 до 30 %.
Середнє значення подачі насоса (витрата рідини гідромотором) підраховують за формулою:
(9.42) |
в якій n – частота обертання шестерні, b – ширина шестерні, m – модуль зачеплення, z – число зубів ведучої шестерні.
Ця формула для поширених конструкцій з кількістю зубів 8...15 і з точністю 2...3% характеризує середню розрахункову подачу (витрату).
Розрахункове значення крутного моменту знаходять за формулою:
(9.43) |
де
– перепад тиску, що спрацьовується в гідромоторі.Розрахункова потужність насоса чи гідромотора :
(9.44) |
У шестеренчастій гідромашині головну частину потужності, що втрачається, складають втрати на тертя. В середньому приймають
9.2.3.5 Пластинчасті насоси і гідромотори
Пластинчасті гідромашини – це роторні гідромашини з рухомими елементами у вигляді ротора, який здійснює обертальний рух, і пластин (шиберів), що обертаються разом з ротором і в той же час здійснюють зворотно-поступальний рух в пазах ротора.
Пластинчасті гідромашини бувають однократної і багатократної дії, одноступінчасті і багатоступінчасті.
Гідромашина (насос або гідромотор) однократної дії (рис.9.17) складається з ротора 1, вісь обертання якого, зміщена відносно осі статора 2 на величину ексцентриситету е. В пазах ротора встановлені пластини 3, які притискуються до внутрішньої поверхні статора або тиском рідини, або пружинами.
Для відокремлення усмоктуючої порожнини 5 від нагнітальної 6 в статорі передбачені ущільнювальні виступи І-ІІ і ІІІ-ІV. Ущільнення ротора з торців забезпечують диски 4.