Смекни!
smekni.com

Основи гідравліки (стр. 19 из 19)

Рис. 9.17. Пластинчаста гідромашина: 1 – ротор; 2 – статор; 3 – пластина (шибер); 4 –диски ущільнювальні; 5 – вхідна порожнина; 6 – вихідна порожнина

Кожна камера за повний оберт бере участь в нагнітанні рідини один раз, і тому такий насос (гідромотор) називають насосом однократної (простої) дії.

Середня теоретична подача (витрата) гідромашини буде:

(9.45)

де b – ширина ротора; е – ексцентриситет; n – частота обертання ротора ; D – діаметр розточки корпуса статора (D=2r); z – число пластин; δ – товщина пластини.

В практиці широко розповсюджені нерегульовані пластинчасті насоси двохкратної дії, перевагами яких є зрівноваженість радіальних сил тиску рідини на пластинчастий ротор, а також більший робочий об’єм і К.К.Д. Фактично насос двохкратної дії складається з двох насосів простої дії, які розміщені в одному корпусі.

Подача насоса двохкратної дії з радіальним розташуванням пластин визначається за формулою:

(9.46)

в якій, r1 i r2 – більший і менший радіуси статора.

Пластинчасті гідромашини використовують також як гідромотори, для чого в насосах потрібно передбачити механізм притиску пластин до статора в момент пуску мотора.

Середній крутний момент на валу гідромотора простої (однократної) дії знаходять з формули:

(9.47)

де

- перепад тиску, який спрацьовується в гідромоторі, QT – теоретична витрата гідромотора, n – частота обертання; МТ – теоретичний крутний момент.

Відповідно, теоретичний (розрахунковий) крутний момент гідромотора двохкратної дії буде дорівнювати:

(9.48)

9.2.3.6 Радіально – поршневі гідромашини

Роторна радіально – поршнева гідромашина являє собою гідромашину (насос або гідромотор), в якій осі поршнів чи плунжерів перпендикулярні до осі обертання ротора або складають з нею кути більші за 450

На рис. 9.18 зображена принципова схема радіально-поршневої гідромашини. Основними конструктивними елементами таких гідромашин є циліндровий блок 2, поршні 1, розподільний пристрій 3, напрямні обойми 4, канали 5 і 6, а також пристрій, за допомогою якого обойма 4 переміщується відносно осі блока 2 на величину ексцентриситету е. Роль розподільного пристрою виконує порожниста вісь з ущільнювальною перемичкою, на якій розміщений циліндричний блок, що обертається. При обертанні блока циліндри своїми каналами по черзі з’єднуються з каналами всмоктуваннями 5 і нагнітання 6, розташованими в порожнистій осі. Якщо

, то поршні обкочуються по обоймі і здійснюють в циліндрах зворотно – поступальний рух. При роботі гідромашини в режимі насоса руху поршнів від центра обертання до периферії відповідає процес всмоктування рідини, а рух поршнів до центра – процесу нагнітання; При роботі гідромашини в режимі мотора робочий хід супроводжується переміщенням поршнів від центра, а витиснення рідини - рухом поршнів до центра. Зміна величини і знаку ексцентриситету дозволяє змінювати величину подачі і напрям потоку рідини.

Рис. 9.18. Схема радіально-поршневої гідромашини: 1 – поршні; 2 – циліндровий блок; 3 – розподільчий пристрій; 4 – напрямна обойма; 5, 6 – канали підведення та відведення робочої рідини

Середня теоретична подача гідромашини:

.
(9.49)

Тут d – діаметр поршня; h=2e – хід поршня, який дорівнює подвійній величині ексцентриситету; z – число поршнів; n – частота обертання.

Середню теоретичну величину крутного моменту на валу радіального поршневого гідромотора визначають за формулою:

(9.50)

де

- перепад тиску, який спрацьовує мотор.

9.2.3.7 Роторні аксіально-поршневі гідромашини

Аксіальні роторно-поршневі гідромашини бувають з нахиленою шайбою (рис.9.19 а) і з нахиленим блоком циліндрів (рис.9.19 б). Вони складаються з циліндрового блоку 1, поршнів 2, розподільного пристрою 3, приводного валу 4 і пристрою для зміни кута α нахилу шайби або блока. Максимальне значення кута α=20…300.

Рис.9.19. Схеми аксіальних роторно-поршневих гідромашин: а – аксіальна роторно-поршнева гідромашина з похилою шайбою; б – аксіальна роторно-поршнева гідромашина з похилим циліндром; 1 – роторно-циліндровий блок; 2 – поршні; 3 – розподільчий пристрій; 4 – приводний вал; 5 – шатуни; 6 – похила шайба; 7, 8 – вікна, що з’єднують поршні з лініями високого і низького тиску; 9 – ведучий диск

При обертанні блока 1 поршні 2, зв’язані шатунами 5 з нахиленою шайбою 6 або ведучим диском 9, здійснюють зворотно-поступальний рух в циліндрах. При віддаленні від розподільного вузла 3 поршні здійснюють всмоктування (насос) або робочий хід (двигун), а при наближенні – нагнітання (насос) або робочий хід (двигун), а при наближенні – нагнітання (насос) чи холостий хід (двигун). Підвід рідини до циліндрів і відвід від них здійснюється через отвори в торці циліндрового блока, які по черзі з’єднуються з розподільними серповидними вікнами 7 і 8, що є в розподільнику 3.

Зміною кута α можна регулювати не тільки подачу, а і напрям потоку рідини в гідромашині.

Середня розрахункова подача (витрата) гідромашини

,
(9.51)

де d – діаметр циліндричної камери (поршня); Dб – діаметр кола на блоці, де розташовані осі циліндрів; z – число циліндрів; n – частота обертання вала машини.

При подачі рідини під тиском в циліндри блока машина буде працювати в режимі гідромотора. Середній крутний момент на вихідному валу розраховують за формулою

,
(9.52)

в якій

- перепад тиску, що спрацьовується в гідромашині.