Смекни!
smekni.com

Основи гідравліки (стр. 2 из 19)

В системі СІ одиницею динамічної в’язкості є Па·с, а в системі СГС-1Пуаз, причому 1Пуаз=0,1Па·с.

На практиці більш часто користуються кінематичною в’язкістю, якою називають відношення динамічної в’язкості рідини до її густини:

(1.8)

Одиницею вимірювання кінематичної в’язкості є Стокс (1Ст) і сантистокс (1сСт):

1Ст=1см2/с=10-4 м2

1сСт=10-2Ст=10-6м2/с;

В’язкість краплинних рідин суттєво залежить від температури і зменшується при зростанні останньої. Так, наприклад, для води при t=00С n=1.7810-6 м2/с, а при t=1000С n=0,2810-6 м2/с. Вплив тиску на в’язкість рідини стає помітним при величинах, більших 10Мпа .

На відміну від краплинних рідин кінематична в’язкість газів зростає при збільшенні температури.

1.2.7 Ідеальна рідина

З метою спрощення розв’язання багатьох задач механіки рідини користуються поняттям “ідеальної” рідини. Ідеальною рідиною називають таку умовну рідину, яка характеризується абсолютною нестисливістю і повною відсутністю в’язкості, тобто сил тертя при її русі.

Очевидно, що при вивченні властивостей рідин, які знаходяться у стані спокою, нема потреби розрізняти реальну і ідеальну рідини.

1.2.8 Сили, що діють в рідині

Внаслідок текучості в рідині діють не зосереджені, а тільки розподіленні по її поверхні чи об’єму сили. Всі вони поділяються на зовнішні і внутрішні.

Рівновагу рідини розглядають при дії на неї зовнішніх сил, причому останні можуть бути поверхневими, тобто такими, що діють безпосередньо на граничну поверхню даного об’єму рідини (атмосферний тиск, сили тертя), і масовими, які дєють на всі частинки маси цього об’єму. Якщо рідина однорідна (r=const),то масові сили називають і об’ємними (сили тяжіння, сили інерції).

Очевидно, що поверхневі сили прямо пропорційні площі граничної поверхні рідини, а масові(об’ємні) –масі (об’єму) рідини.

В гідравліці масові сили часто характеризують одиничними масовими силами , які являють собою відношення масової сили до маси даного об’єму рідини, тобто прискорення.

Проекції результуючої одиничних масових сил (результуючого прискорення) на осі декартової системи координат Oxyz прийнято позначати через X, Y, Z.


2. Гідростатика

2.1 Гідростатичний тиск і його властивості

Такі властивості, як текучість і неспроможність чинити опір розтягуючим зусиллям, дозволяють сформулювати умови рівноваги певного об’єму рідини: рідина може зберегти свій стан рівноваги тільки в тому випадку, якщо зовнішні сили, що діють на граничну поверхню даного об’єму, напрямлені по внутрішнім нормалям до цієї поверхні.

Розглянемо довільний об’єм рідини, що знаходиться в рівновазі під дією зовнішніх сил (рис 2.1). Розсічемо цей об’єм на дві частини деякою січною площиною w і відкинемо верхню частину І.

Тоді на частину ІІ з боку відкинутої частини буде діяти певна сила Р, яка повинна бути перпендикулярною до січної площини. Цю стискуючу силу називають силою гідростатичного тиску. Якщо на січній площині виділити елементарну площинку Dw, то на неї буде діяти частина DР сили Р.

Границя відношення DР/Dwназивається гідростатичним тиском р в даній точці рідини:

(2.1)

або

.
(2.2)

Середній гідростатичний тиск, який діє на площі w, визначають за формулою:

.
(2.3)

Одиницею тиску в системі СІ є паскаль (1Па=Н/м2).

Гідростатичний тиск характеризується трьома властивостями.

1. Гідростатичний тиск завжди напрямлений по внутрішній нормалі до поверхні, на яку він діє, і створює тільки стискуючі напруження.

Ця властивість безпосередньо виходить із визначення тиску, як напруження від нормальної стискуючої сили.

2. В будь-якій точці рідини гідростатичний тиск однаковий по всім напрямам.

Щоб довести це виділимо в об’ємі рідини призму з основою у вигляді трикутника АВС (рис 2.2а) і замінимо дію зовнішнього об’єму рідини на її бокові грані відповідними силами. Оскільки призма знаходиться у стані рівноваги, то трикутник цих сил повинен бути замкнутим (рис 2.2б).

Силовий трикутник подібний трикутнику АВС і тому

. Якщо поділити всі члени даного рівняння на довжину призми Dl, то в знаменниках будуть стояти площі відповідних граней призми. При спрямуванні розмірів призми до нуля у відповідності з рівнянням 2.1 отримаємо:
РАВВСАС=P, (2.4)

що і потрібно було довести.

3. Гідростатичний тиск в точці залежить тільки від її положення у просторі, тобто р=f(x,y,z).

Цей висновок виходить з викладеного вище.

2.2 Диференціальні рівняння рівноваги рідини

Виділимо в нерухомій рідині нескінченно малий об’єм у вигляді паралелепіпеда з ребрами dx, dy, dz (рис 2.3). Подумки відкинемо рідину, що оточує паралелепіпед, і замінимо її дію відповідними силами. Припустимо, що на ліву грань діє тиск р. Тоді на праву грань А1В1С1D1, яка знаходиться на відстанні x+dx, буде діяти тиск

.

Відповідно, сила тиску на ліву грань АВСD буде дорівнювати

,

а на праву

(

Рис.2.3

Знак (-) показує, що сила діє у від’ємному напрямі осі х)

Крім сили тиску на паралелепіпед може діяти рівнодіюча масових сил (тяжіння, відцентрова, інерції), проекція якої на вісь х буде:

,

де Х-проекція прискорення (одиничної масової сили) на вісь х;

dV-об’єм паралелепіпеда.

Рівняння рівноваги сил, що діють на паралелепіпед в напрямі осі х, має вигляд:

чи, після спрощень,

Аналогічно можна отримати рівняння рівноваги сил відносно осей y і z

Таким чином, кінцево маємо систему:

(2.5)

Рівняння (2.5) є основними диференціальними рівняннями рівноваги рідини (рівняння Ейлера).

Щоб привести рівняння Ейлера до вигляду, зручного для інтегрування, помножимо кожне з рівнянь (2.5) відповідно на dx, dy, dz і складемо їх почленно:

Ліва частина цього рівняння є повним диференціалом тиску dp, тому:

(2.6)

Рівняння (2.6) називається основним диференціальним рівнянням гідростатики.

Зі співвідношення (2.6) можна отримати рівняння для поверхні рівного тиску (поверхні рівня). Для такої поверхні p=const і при r=const будемо мати:

(2.7)

Частинним випадком поверхні рівня є вільна поверхня рідини.

Поверхні рівня мають такі властивості:

1) дві різні поверхні рівня не можуть перерізати одна одну;

2) зовнішні об’ємні сили напрямленні по нормалі до поверхні рівня.

2.3 Основне рівняння гідростатики

Розглянемо найбільш поширений випадок рівноваги рідини, коли вона знаходиться тільки під дією сили тяжіння. Тоді проекції одиничних масових сил на координатні осі будуть такими: Х=0, Y=0, Z=-g (координатну вісь Oz вважаємо напрямленою вверх), і рівняння поверхні рівного тиску (2.7) набуває вигляду:

Звідкіля

(2.8)

Таким чином, при рівновазі рідини в полі сил тяжіння поверхні рівня являють собою сім’ю горизонтальних площин. Однією з поверхонь рівного тиску буде і вільна поверхня рідини.