Смекни!
smekni.com

История поиска путей учета рефракционных искажений в высокоточных инженерно-геодезических измерениях (стр. 1 из 4)

СОДЕРЖАНИЕ

Введение

1. Явление рефракции

2. Изучение рефракционных искажений в инженерно-геодезических измерениях. Нивелирование

3. Современные инструменты высокоточных инженерно-геодезических измерений

Заключение

Список использованной литературы

ВВЕДЕНИЕ

Геодезические измерения для разделения поверхности земли на отдельные участки производились в Египте, Китае, других странах за много столетий до н.э.

С развитием и расширением землеустроительных и строительных работ опыт этих измерений накапливался. Из Египта геодезические работы перешли в Древнюю Грецию. В этих государствах геодезические знания начали формировать науку. Они получили теоретическое обоснование и получило начало геодезии, что в переводе с греческого означает: «землеизмерение». Геодезия и геометрия долго взаимно дополняли и развивали друг друга. Развитию и совершенствованию методов геодезических работ способствовали научные достижения в области математики, физики, инструментальной техники.

Можно предположить, что геодезия превратилась в самостоятельную науку в начале XI века. Аль-Бирун был первым, кто определил геодезию как науку, отделил её предметы и объекты от геометрии, оптики и стереометрии, он написал и первый учебник «Геодезия» (1025 г.) в котором предметы геодезии отделены от её объектов. Искусство измерения по Аристотелю есть часть практических геометрических, т.е. геодезия представляет собой один из видов практического искусства. Таким образом можно полагать, что геодезия как часть практической геометрии существовала с IV тыс. до н.э., а как фундаментальная наука, отличная от геометрии и стереометрии с X-XI в н.э.

Первые указания на выполнение геодезических измерений в России относятся к XI в., когда между Керчью и Таманью по льду была измерена ширина Керченского пролива.

Инженерно-геодезические измерения занимают в общей схеме строительных работ особое место. Они начинаются еще в период проведения изысканий, выноса проектов сооружений в натуру и являются составной частью технологии работ в течение всего процесса строительства и эксплуатации сооружений. Вопросы точности проведения этих работ имеют принципиальное значение, ибо они, в конечном счете, определяют уровень качества строительно-монтажных и ремонтных работ.

Одним из основных источников ошибок при высокоточных угловых измерениях в триангуляции является влияние внешних условий, главным образом боковой рефракции.

Проследим развитие представлений о явлении рефракции и историю поиска путей учета рефракционных искажений в высокоточных инженерно-геодезических измерениях.

1. ЯВЛЕНИЕ РЕФРАКЦИИ

Атмо­сфера представляет собой оптически неоднородную среду, поэтому траектория светового луча в атмосфе­ре, строго говоря, всегда в какой-то степени криволи­нейна. Искривление световых лучей при прохождение через атмосферу называют рефракцией света в ат­мосфере.

Различают астрономическую и земную рефракцию. В первом случае рассматривается искривление све­товых лучей, приходящих к земному наблюдателю от небесных тел (Солнца, Луны, звезд). Во втором слу­чае рассматривается искривление лучей, приходящих к наблюдателю от земных объектов. В обоих случаях вследствие искривления световых лучей наблюдатель может видеть объект не в том направлении, которое соответствует действительности; объект может ка­заться искаженным. Возможно наблюдение объекта даже тогда, когда тот фактически находится за ли­нией горизонта. Таким образом, рефракция света в земной атмосфере может приводить к своеобразные обманам зрения.

Первые упоминания о рефракции света в атмо­сфере относятся, по-видимому, к I в. н. э. В труде Клеомеда «Циклическая теория метеоров» читаем: «Разве не возможно, чтобы свето­вой луч, проходя сквозь влажные слои воздуха, искривлялся, почему и Солнце кажется находящимся над горизонтом уже после того, как оно в действи­тельности зашло за горизонт?»[1]

Во II в. н. э. Птоле­мей справедливо указывал, что рефракция должна отсутствовать для лучей, идущих от объекта, находя­щегося в зените, и должна постепенно увеличиваться по мере того, как объект приближается к линии го­ризонта (т. е. по мере того, как возрастает зенитное расстояние).

Рефракцией света в атмосфере интере­совался видный арабский ученый XI в. Ибн Аль-Хай-тан, известный на Западе под именем Альхазена. Он отмечал, что вследствие рефракции света длитель­ность дневной части суток немного увеличивается. Используя удлинение дня, обусловленное рефракцией, Альхазен пытался вычислить высоту земной атмо­сферы.

Знаменитый немец­кий ученый Иоганн Кеплер (1571—1630) в своем труде, скромно озаглавленном «Дополнение к Витгелию», разработал теорию рефракции света, предпола­гая, что атмосфера есть однородный слой некоторой толщины Н, имеющий на всех высотах одинаковую плотность. Не надо удивляться такому предположе­нию, поскольку во времена Кеплера воздух считался невесомым; пройдет почти полвека, прежде чем Торричелли докажет, что давление воздуха убывает с вы­сотой.

Рефракция света в атмосфере по Кеплеру показана на рис. 1.[2]

Здесь R- радиус Земли, H- высота воздушного слоя, образующего атмосферу. Угол Ω=α12 есть угол рефракции. Показанный на ри­сунке световой луч преломляется лишь при входе в слой атмосферы (в точке A). Применяя теорему синусов к треугольнику O1OA, получаем

, или, иначе
.

Учитывая, что α 21-Ω , находим

.

Исходя из оценок Альхазена, Кеплер принял Н/R = 0,014 и, применяя данную формулу, вычислил для φ=90° угол α1-Ω. Он ока­зался равным 80°29', т. е. заметно меньше, чем следовало ожидать на основе известных в то время экспе­риментальных данных.

Для получения согласия с данными наблюде­ний следовало взять в формуле существенно меньшее значение Н/R (равное примерно 0,001). Кеп­лер сделал отсюда вывод, что реф­ракция света обусловлена только той частью атмосферы, которая не­посредственно примыкает к земной поверхности и имеет высоту не бо­лее 5 км. Можно сказать, что в ру­ках Кеплера был ключ к открытию убывания плотности воздуха с вы­сотой; однако он так и не сделал решающего шага.

Рис.1. Рефракция света в атмосфере по Кеплеру

Согласно современным данным угол рефракции (угол рефракции при φ=90°) со­ставляет 35'. Когда мы, любуясь на морском берегу закатом Солнца, видим, как нижний край светила коснулся линии горизонта, мы обычно не сознаем, что в действитель­ности в данный момент этот край светила уже находится на 35' ниже линии горизонта. Интересно, что верхний край солнечного диска при­поднимается рефракцией слабее - только на 29' (ведь рефракция уменьшается с уменьшением зенитного расстояния). Поэтому заходящее Солнце кажет­ся немного сплюснутым по вертикали.

Плотность воздуха, а вместе с тем и показатель преломления с высотой постепенно уменьшаются. Это хорошо понимал вели­кий английский ученый Исаак Ньютон (1643-1727).

Ньютон внес исключитель­но большой вклад в развитие теории астрономической рефракции света. К сожалению, он не включил свои исследования в этой области ни в «Лекции по оп­тике», ни в «Оптику». Чрезвычайно щепетильный в вопросах научной публикации Ньютон явно недооце­нивал значения вычисленных им таблиц рефракции света. В одном из его писем, относящихся к 1695 г., можно встретить такие строки: «Я не имею намере­ния писать о рефракции и не желаю, чтобы таблица рефракции была распространяема».[3] Сегодня мы мо­жем познакомиться с исследованиями Ньютона по рефракции света лишь благодаря счастливой случай­ности. Дело в том, что более чем через сто лет после смерти великого ученого, в 1832 г. на чердаке одного из домов Лондона были обнаружены 27 писем Нью­тона к Флемстиду. Флемстнд занимался астрономи­ческими наблюдениями на обсерватории в Гринвиче; он имел звание «королевского астронома».

В середине 90-х годов Ньютон изложил в письмах к Флемстиду некоторые теоремы, касающиеся теории рефракции света в ат­мосфере, а также первоначальную и более точную таблицы рефракции, где для разных значений зенит­ного расстояния были вычислены углы рефракции.

Переписка Ньютона с Флемстидом была издана в 1835 г. английским Адмиралтейством. В 30-х годах нашего столетия эту книгу совершенно случайно при­обрел выдающийся советский ученый в области кораблестроения А. Н. Крылов. Академик А. Н. Кры­лов хорошо знал творчество Ньютона; он сделал прекрасный перевод на русский язык ньютоновых «Математических начал натуральной философии». Используя письма Ньютона к Флемстиду и применяя только те математические средства, которыми распо­лагал в свое время Ньютон, А. И. Крылов воскресил доказательства и выводы великого английского уче­ного и изложил их в работе «Теория рефракции Нью­тона», вышедшей в свет в 1935 г. В заключительной части этой работы А. Н. Крылов плсал: «Если развить ньютонову теорию теми элементарными ме­тодами анализа, которыми Ньютон обладал, и срав­нить ее с современными теориями, то сразу можно будет заметить, сколь простое и естественное полу­чается изложение и сколько мало к нему, по су­ществу, за 240 лет прибавлено».[4]

В письме к Флемстиду, датированным 24 октября 1694 г., Нью­тон, в частности, писал: «Я того мнения, что рефракция... слегка изменяется вместе с весом воздуха, по­казываемым барометром, ибо, когда воздух тяжелее и, значит, плотнее, он преломляет более, нежели когда он легче и реже».[5] Вначале Ньютон полагал, что плотность воздуха убывает равномерно (линейно) от поверхности Земли до верхней границы атмо­сферы. Исходя из этого, он рассчитал свою первую таблицу рефракции. Обнаружив некоторое расхожде­ние между результатами расчета и данными наблю­дений Флемстида, Ньютон начал работать над новой таблицей рефракции. Он отказался от предположении о линейном убывании плотности воздуха с высотой и стал полагать, что плотность уменьшается пропорционально уменьшению давления. Ученый писал в связи с этим, что «плотность воздуха в земной атмосфере пропорциональна весу всего накрывающего воздуха».[6] Таким об­разом, Ньютон фактически пришел к выводу об убы­вании плотности атмосферы с высотой по экспонен­циальному закону. Поскольку изучение вышеуказанного закона не входит в круг задач настоящей работы, опустим достаточно объемные расчеты.