· спутниковые геодезические сети 1-го класса (СГС-1).
Эти три класса сетей строго связаны между собой: ФАГС является опорой для ВГС, а ВГС — для СГС-1.
При построении ФАГС, ВГС и СГС-1 предусматривается привязка существующей ГГС к высшему классу спутниковых сетей, т. е. существующая ГГС будет сетью сгущения.
Пункты ФАГС располагаются на расстоянии 800-1000 км, их число — 50+70,10-15 пунктов должны быть постоянно действующими, а остальные — переопределяться группами через промежутки времени, зависящие от геодинамической активности региона.
Пространственное положение пунктов ФАГС определяется в общеземной системе координат с ошибкой положения пунктов относительно центра масс не более (2-3)10-8 R, где R — радиус Земли, ошибка взаимного положения пунктов ФАГС не более 2 см в плане и 3 см по высоте. Для обеспечения этой точности необходимо использовать весь комплекс существующих космических измерений (лазерных, радиоинтерферометрических и других).
ВГС является системой пунктов с расстоянием D = 150-300 км между ними, которые определяются относительными методами космической геодезии со средней квадратической ошибкой не более 3 мм + 5 • 10-8 D для плановых координат и 5 мм + 7 • 10-8 D — для геодезических высот.
СГС-1 состоят из системы легкодоступных пунктов с плотностью, достаточной для использования потребителями всевозможных спутниковых определений. СГС-1 определяются относительными методами космической геодезии со средними квадратическими ошибками: 3 мм + 10-7 D в плане и 5 мм + + 2 • 10-8 D по геодезической высоте для геодинамически активных регионов и 5 мм + 2 • 10-7. D в плане и 7мм + 3 • 10-7 D по высоте для остальных регионов. Среднее расстояние между пунктами СГС-1 равно 25-35 км. В экономически развитых районах пункты СГС-1 в зависимости от требований потребителей могут иметь большую плотность.
Постоянно действующие пункты ФАГС в основном создаются на базе действующих пунктов спутниковых (космических) наблюдений, астрономических обсерваторий, пунктов службы вращения Земли, радиоинтерферометрических комплексов со сверхдальними базами «Квазар», программы «Дельта» и др. На пунктах ФАГС предусматривают две программы наблюдений: постоянные наблюдения спутниковых систем ГЛОНАСС и GPS (включая и международные программы) и наблюдения других специализированных спутников и космических объектов согласно межведомственным программам построения ФАГС.
Следует заметить, что спутниковые технологии не всегда можно использовать при решении традиционных геодезических задач, например, недостаточна относительная точность определений на коротких расстояниях, ограничено использование GPS-методов в точной инженерной геодезии, процесс привязки ориентирных пунктов, легко решаемый в традиционной технологии, становится довольно сложным и дорогим, особенно в закрытой местности, в спутниковой технологии, так как объем спутниковых определений в этом случае возрастает более чем в два раза.
3. Погрешности геодезических измерений (теория и решение задач)
3.1 Геодезическое измерение, результат измерения, методы и условия измерений. Равноточные и неравноточные измерения
Измерением называется процесс сравнения некоторой физической величины с другой одноименной величиной, принятой за единицу меры.
Единица меры – значение физической величины, принятой для количественной оценки величины того же рода.
Результат измерений – это число, равное отношению измеряемой величины единицы меры.
Различают следующие виды геодезических измерений:
1. Линейные, в результате, которых получают наклонные иррациональные расстояния между заданными точками. Для этой цели применяют ленты, рулетки, проволоки, оптические свето- и радиодальномеры.
2. Угловые, определяющие величины горизонтальных углов. Для выполнения таких измерений применяют теодолит, буссоли, эклиметры.
3. Высотные, в результате, которых получают разности высот отдельных точек. Для этой цели применяют нивелиры, теодолиты-тахеометры, барометры.
Различают два метода геодезических измерений: непосредственные и посредственные (косвенные).
Непосредственные – измерения, при которых определяемые величины получают в результате непосредственного сравнения с единицей измерения.
Косвенные – измерения, при которых определяемые величины получаются как функции других непосредственно измеренных величин.
Процесс измерения включает:
· Объект – свойства которого, например, размер характеризуют результат измерения.
· Техническое средство – получать результат в заданных единицах.
· Метод измерений – обусловлен теорией практических действий и приёмов технических средств.
· Исполнитель измерений – регистрирующее устройство
· Внешняя среда, в которой происходит процесс измерений.
Измерения различают равноточные и неравноточные. Равноточные – это результаты измерений однородных величин, выполняемые с помощью приборов одного класса, одним и тем же методом, одним исполнителем при одних и тех же условиях. Если хотя бы один из элементов, составляющий совокупность, меняется, то результат измерений неравноточный.
3.2 Классификация погрешностей геодезических измерений. Средняя квадратическая погрешность. Формы Гаусса и Бесселя для её вычисления
Геодезические измерения, выполняемые даже в очень хороших условиях, сопровождаются погрешностями, т.е. отклонение результата измерений L от истинного значения Х нумеруемой величины:
∆ = L-X
Истинное– такое значение измеряемой величины, которое идеальным образом отражало бы количественные свойства объекта. Недостижимое условие – истинное значение – понятие гипотетическое. Это величина, к которой можно приближаться бесконечно близко, оно не достижимо.
Точность измерений – степень приближения его результата к истинному значению. Чем ниже погрешность, тем выше точность.
Абсолютная погрешность выражается разностью значения, полученного в результате измерения и истинного измерения величины. Например, истинное значение l = 100 м, однако, при измерении этой же линии получен результат 100,05 м, тогда абсолютная погрешность:
E = Xизм – X
E = 100,05 – 100 = 0,05 (м)
Чтобы получить значение достаточно произвести одно измерение. Его называют необходимым, но чаще одним измерением не ограничиваются, а повторяют не менее двух раз. Измерения, которые делают сверх необходимого, называют избыточными (добавочными), они являются весьма важным средством контроля результата измерения.
Абсолютная погрешность не даёт представления о точности полученного результата. Например, погрешность в 0,06 м может быть получена при измерении l = 100 м или l = 1000 м. Поэтому вычисляют относительную погрешность:
C = Eср / X
C = 0,06 / 100 = 1/1667, т.е на 1667 м измеряемой l допущена погрешность в 1 метр.
Относительная погрешность – отношение абсолютной погрешности к истинному или измеренному значению. Выражают дробью. По инструкции линия местности должна быть измерена не грубее 1/1000.
Погрешности, происходящие от отдельных факторов, называются элементарными. Погрешность обобщенная– это сумма элементарных.
Возникают:
· грубые (Q),
· систематические (O),
· случайные (∆).
Грубые погрешности измерений возникают в результате грубых промахов, просчётов исполнителя, его невнимательности, незамеченных неисправностях технических средств. Грубые погрешности совершенно недопустимы и должны быть полностью исключены из результатов измерений путем проведения повторных, дополнительных измерений.
Систематические погрешности измерений – постоянная составляющая, связанная с дефектами: зрение, неисправность технических средств, температура. Систематические погрешности могут быть как одностороннего действия, так и переменного (периодические погрешности). Их стремятся по возможности учесть или исключить из результатов измерений при организации и проведении работ.
Случайные погрешности измерений неизбежно сопутствуют всем измерениям. Погрешности случайные исключить нельзя, но можно ослабить их влияние на искомый результат за счет проведения дополнительных измерений. Это самые коварные погрешности, сопутствующие всем измерениям. Могут быть разные как по величине, так и по знаку.
E = Q + O +∆
Если грубые и систематические погрешности могут быть изучены и исключены из результата измерений, то случайные могут быть учтены на основе глубокого измерения. Изучение на основе теории вероятностей.
На практике сложность заключается в том, что измерения проводятся какое-то ограниченное количество раз и поэтому для оценки точности измерений используют приближённую оценку среднего квадратического отклонения, которую называют среднеквадратической погрешностью (СКП).
Гауссом была предложена формула среднеквадратической погрешности:
∆2ср = (∆21 + ∆22 +… +∆2n) / n,
∆2 = m2 = (∆21 + ∆22 +… +∆2n) / n,
∆ = m,
∆ср = m = √(∑∆2i / n)
Формула применяется, когда погрешности вычислены по истинным значениям.
Формула Бесселя:
m = √(∑V2i / (n-1))
Средняя квадратическая погрешность арифметической середины в Ön раз меньше средней квадратической погрешности отдельного измерения
М=m/Ön
При оценке в качестве единицы меры точности используют среднеквадратическую погрешность с весом равным единице. Её называют средней квадратической погрешностью единицы веса.