M – погрешность измерения с весом 1;
P – вес данного результата измерения.
СКП измерения с весом 1 равна корню квадратному из дроби, в числителе которой – сумма произведений квадратов абсолютных погрешностей неравноточных измерений на их веса, а в знаменателе – число неравноточных измерений.
M = √ (∑∆2P/n),
где ∆ - абсолютная погрешность неравноточного измерения;
P –его вес;
n – число измерений.
Контрольная задача 9
Результатам измерения углов соответствуют m1 = 0,5; m2 = 0,7; m3 = 1,0. Вычислить веса результатов измерений.
Решение:
P = К / m2;
P1 = 1 / (0,5)2 = 4;
P1 = 1 / (0,7)2 = 2,04;
P1 = 1 / (1,0)2 = 1.
Ответ: 4; 2,04; 1.
Найти вес невязки в сумме углов треугольника, если все углы измерены равноточно.
Решение:
m = √[V2] / (n-1), n= 3
P = К / m2
m = √[V21+ V22+ V23]/(3 – 1) = √[V21+ V22+ V23]/2
P = К / √[V21+ V22+ V23]/2 = 2 К / √[V21+ V22+ V23] = 2/ ∑ V2i
3.4 Функции по результатам измерений и оценка их точности
В практике геодезических работ искомые величины часто получают в результате вычислений, как функцию измеренных величин. Полученные при этом величины (результаты) будут содержать погрешности, которые зависят от вида функции и от погрешности аргументов по которым их вычисляют.
При многократном измерении одной и той же величины получим ряд аналогичных соотношений:
∆U1 = k∆l1
∆U2 = k∆l2
…………..
∆Un = k∆ln
Возведём в квадрат обе части всех равенств и сумму разделим на n:
(∆U12 + ∆U22 + … + ∆Un2) / n = k2×(∆l12 + ∆l22 + ... + ∆ln2) / n;
∑∆U2 / n = k2×(∑∆l2 / n);
m = √(∑∆U2 / n);
m2 = k2 × ml2,
где ml – СКП дальномерного отсчёта.
m = k × ml.
СКП функции произведения постоянной величины на аргумент равна произведению постоянной величины на СКП аргумента.
Функция вида U = l1 + l2
Определить СКП U, где l1 и l2 – независимые слагаемые со случайными погрешностями ∆l1 и ∆l2. Тогда сумма U будет содержать погрешность:
∆U = ∆l1 + ∆l2.
Если каждую величину слагаемого измерить n раз, то можно представить:
∆U1 = ∆l1' + ∆l2' – 1-е измерение,
∆U2 = ∆l1" + ∆l2" – 2-е измерение,
…………………
∆Un = ∆l1(n) + ∆l2(n) – n-е измерение.
После возведения в квадрат обеих частей каждого равенства почленно их сложим и разделим на n:
∑∆U2 / n = (∑∆l12)/n + 2×(∑∆l1×∆l2)/n + (∑∆l22)/n.
Так как в удвоенном произведении ∆l1 и ∆l2 имеют разные знаки, они компенсируются и делим на бесконечно большое число n, то можно пренебречь удвоенным произведением.
mU2 = ml12 + ml22;
mU = √( ml12 + ml22 ).
СКП суммы двух измеренных величин равна корню квадратному из суммы квадратов СКП слагаемых.
Если слагаемые имеют одинаковую СКП, то:
ml1 = ml2 = m;
mU = √(m2 + m2) = √2m2 = m√2.
В общем случае:
mU = m√n,
где n – количество аргументов l.
Функция вида U = l1 - l2
mU = m√n;
mU = √( ml12 + ml22).
СКП разности двух измерений величин равна корню квадратному из суммы квадратов СКП уменьшаемого и вычитаемого.
Функция вида U = l1 - l2 + l3
mU = √( ml12 + ml22 + ml32…)
СКП суммы n измеренных величин равна корню квадратному из суммы квадратов СКП всех слагаемых.
Линейная функция вида U = k1l1 + k2l2 + … + knln
mU = √[ (k1ml1)2 + (k2ml2)2 + … + (knmln)2],
т.е. СКП алгебраической суммы произведений постоянной величины на аргумент равна корню квадратному из суммы квадратов произведений постоянной величины на СКП соответствующего аргумента.
Функция общего вида U = ƒ( l1, l2, …, ln)
Это наиболее общий случай математической зависимости, включающий все рассматриваемые выше функции, являющиеся частным случаем. Это значит, что аргументы l1, l2, …, ln могут быть заданы любыми уравнениями. Для определения СКП такой сложной функции необходимо проделать следующее:
1. Найти полный дифференциал функции:
dU = (dƒ/dl1)×dl1 + (dƒ/dl2)×dl2 + … + (dƒ/dln)×dln,
где (dƒ/dl1), (dƒ/dl2), …,(dƒ/dln) – частные производные функции по каждому из аргументов.
2. Заменить дифференциалы квадратами соответствующих СКП, вводя в квадрат коэффициенты при этих дифференциалах:
mU2 = (dƒ/dl1)2×ml12 + (dƒ/dl2)2×ml22 + … +(dƒ/dln)2×mln2.
3. Вычислить значения частных производных по значениям аргументов:
(dƒ/dl1), (dƒ/dl2), …,(dƒ/dln).
И тогда mU = √[ (dƒ/dl1)2× ml12 + (dƒ/dl2)2×ml22 + … +(dƒ/dln)2×mln2].
СКП функции общего вида равна корню квадратному из суммы квадратов произведений частных производных по каждому аргументу на СКП соответствующего аргумента.
3.5 Оценка точности по разностям двойных измерений и по невязкам в полигонах и ходах.
В практике геодезических работ часто одну и ту же величину измеряют дважды. Например, стороны теодолитного хода в прямом и обратном направлении, углы двумя полуприемами, превышения – по черной и красной стороне вех. Чем точнее произведены измерения, тем лучше сходимость результатов в каждой паре.
mlср. = ½ √∑d2/n
где d – разности в каждой паре; n – количество разностей.
Формула Бесселя:
mlср = ½ √∑d2/n-1
Если измерения должны удовлетворять какому-либо геометрическому условию, например, сумма внутренних углов треугольника должна быть 180˚, то точность измерений можно определить по невязкам получающимся в результате погрешностей измерений.
μ=√∑ [f2 /n]/N,
где - СКП одного угла;
f – невязка в полигоне;
N – количество полигонов;
n – количество углов в полигоне.
4. Определение дополнительных пунктов
4.1 Цель и методы определения дополнительных пунктов
Дополнительные пункты определяются наряду со съемочной сетью в основном для сгущения существующей геодезической сети пунктами съемочного обоснования. Они строятся прямыми, обратными, комбинированными, а при наличии электронных дальномеров – линейными засечками и лучевым методом.
В некоторых случаях дополнительный пункт определяется передачей (снесением) координат с вершины знака на землю.
4.2 Передача координат с вершины знака на землю. (Решение примера)
При производстве топографо-геодезических работ в городских условиях невозможно бывает установить теодолит на пункте геодезической сети (пунктом является церковь, антенна и т.п.). Тогда и возникает задача по снесению координат пункта триангуляции на землю для обеспечения производства геодезических работ на данной территории.
Исходные данные: пункт A с координатами XA, YA; пункты геодезической сети B (XB, YB) и C (XC, YC).
Полевые измерения: линейные измерения выбранных базисов b1 и b'1; измерения горизонтальных углов ß1 , ß'1 , ß2 , ß'2 ; б, б'.
Требуется найти координаты точки P – XP, YP.
Решение задачи разделяется на следующие этапы:
Решение числового примера
Исходные данные
Обозначе- ния | А ХА, YА | B ХB, YB | C ХC, YC | β1 β2 | β2 β2` | β1 β1` | б б‘ |
Численные значения | 6327,46 | 8961,24 | 5604,18 | 266,12 | 38o26'00" | 70o08'54" | 138o33'49" |
27351,48 | 25777,06 | 22125,76 | 198,38 | 42˚26'36" | 87˚28'00" | 71˚55'02" |
Вычисление расстояния DАР
Обозначе- ния | B1 B2 | sinβ2 sinβ‘2 | sin(β1+β2 ) sin(β‘1+β‘2) | B1 sinβ2 B2 sinβ‘2 | D1 D2 | D1 -D2 2D/T | Dср |
Численные значения | 266,12 | 0,62160 | 0,94788 | 165,420 | 174,52 | 0,00 | 174,52 |
198,38 | 0,67482 | 0,76705 | 133,871 | 174,52 |
Решение обратных задач
Обозначения | YB YА | ХB ХА | YC YА | ХC ХА | tgαAB αAB | tgαAC αAC | sinα AB sinα AC cos αAB cosαAC | S AB S AC |
Численные значения | 10777,06 | 8961,24 | 7125,76 | 5605,08 | -0,5977 | 7,23421 | -0,51309 -0,99058 0,85833 -0,13693 | 3068,48 |
12351,48 | 6327,46 | 12351,48 | 6327,46 | 329˚07'55" | 262o07'51" | 5275,51 |
Вычисление дирекционных углов αАР = αD