Смекни!
smekni.com

Обоснование точности измерений и допусков при развитии геодезических сетей специального назначен (стр. 3 из 6)

VS35= c35ξ5 + d35η5 + l35= cosα35ξ5 + sinα35η5 + l35

VS45= c45ξ4 + d45η4 + c54ξ5 + d54η5 + l45= −cosα45ξ4 − sinα45η4 + cosα45ξ5 + sinα45η5 + l45

Таблица коэффициентов параметрических уравнений поправок
измеренных длин сторон (матрица Bs):

Определяемые пункты

Изм.

Скочково

Лесное

S51

0

0

-0,4981

-0,8671

S52

0

0

0,9761

-0,2175

S42

0,6828

-0,7306

0

0

S43

0,9833

0,1818

0

0

S45

0,2405

-0,9706

-0,2405

0,9706


Установление единицы веса и вычисление исходной весовой матрицы P для уравниваемых величин.

Измеряемые углы на пунктах триангуляции представляются рядом равноточных независимых направлений. Поэтому в качестве единицы веса целесообразно взять вес измерения направлений. Тогда корреляционная матрица ошибок направлений, а следовательно, и ее весовая матрица PМ, будут равны единичной матрице

Q = PМ = Е.

Вычисление корреляционной матрицы ошибок координат определяемых пунктов.

Корреляционная матрица ошибок необходимых параметров равна обратной матрице коэффициентов нормальных уравнений

.

Благодаря диагональной конструкции матрицы P формулу для вычисления коэффициентов нормальных уравнений представим в виде

Учитывая, что

и в рассматриваемой сети не планируются измерения азимутов и длин сторон, корреляционная матрица ошибок необходимых параметров будет равна

.

В результате вычислений получим:

=

0,7547

-0,0536

0,0224

0,0522

-0,0639

-0,3958

0,0593

0,4551

0,1392

-0,0536

0,3158

0,0566

-0,128

0,0382

0,2224

-0,166

-0,1546

-0,1527

0,0064

0,0566

0,7559

-0,2869

0,0368

-0,0061

-0,5632

0,0366

-0,0135

0,0522

-0,128

-0,2869

0,8841

-0,2239

-0,677

0,7581

0,2277

0,0151

-0,0639

0,0382

0,0368

-0,2239

0,5244

0,6486

-0,2013

-0,3494

0,1048

-0,3958

0,2224

-0,0061

-0,677

0,6486

2,6272

-0,4731

-1,756

-0,061

0,0593

-0,166

-0,5632

0,7581

-0,2013

-0,4731

1,3295

0,2446

0,0412

0,4551

-0,1546

0,0366

0,2277

-0,3494

-1,756

0,2446

1,9114

0,2573

0,1392

-0,1527

-0,0135

0,0151

0,1048

-0,061

0,0412

0,2573

0,648

матрицу

можно разбить на блоки

где

— корреляционная матрица ошибок уравненных значений ориентирующих углов;

—матрица взаимных весовых коэффициентов между уравненными значениями ориентирующих углов и уравненными значениями координат определяемых пунктов;

— корреляционная матрица ошибок координат определяемых пунктов.

3,5788

-0,4731

-1,756

-0,061

-0,4731

2,3295

0,2446

0,0412

-1,756

0,2446

2,9114

0,2573

-0,061

0,0412

0,2573

2,648

x=

Вычисление корреляционных матриц ошибок

дирекционных углов и длин сторон сети.

Дирекционные углы и длины сторон геодезической сети являются функциями координат:

Корреляционные матрицы их ошибок в уравненной сети вычисляются по формулам:

Fa — матрица частных производных оцениваемых дирекционных углов;

Fs — матрица частных производных оцениваемых длин сторон сети.

Известно, что

,

,
,

где

и
модельные значения дирекционных углов и длин сторон проектируемой сети.

Производные

,
,
и
равны

,

,
.
Определяемые пункты

Изм.

Жихарево

Марково

a51

0,

0

-0,4235

-07546

a52

0

0

0,3428

-0,3426

a43

0,5678

-0,5673

0

0

a42

09734

0,4536

0

0

a45

0,4632

-0,4256

-0,2533

0,3527

Матрица частных производных оцениваемых

дирекционных углов (матрица Fa):

Матрица частных производных оцениваемых