Смекни!
smekni.com

Исследование скважин в период освоения и опробования (стр. 2 из 4)

Рис. 4. Схематические температурные кривые при выделении работающих пластов: а - в режиме нагнетания; б - в режиме отбора

первоначальной температуры) столба жидкости в скважине вследствие проявления эффекта адиабатического сжатия (параллельное смещение кривой по шкале температур вправо). Наиболее заметно влияние этого эффекта на распределение температуры в зумпфе скважины, где, как правило, движение жидкости отсутствует.

Максимальное значение разогрева при этом может достигнуть величины ΔТН=ήΔΡ На рис.4а приведена температурная кривая, зарегистрированная в режиме нагнетания.

Участок кривой 3-4 на рис. 1б является переходным между IIи IIIпериодами и соответствует явлению прорыва закачиваемого воздуха через насосно-компрессорные трубы, когда снижающийся уровень жидкости в межтрубном пространстве достигает воронки НКТ (устанавливается динамический уровень). Прорыв воздуха осуществляет газирование жидкости в насосно-компрессорных трубах и уменьшение ее средней плотности, что в свою очередь приводит к резкому (скачкообразному) изменению забойного давления в скважине и возникновению депрессии на пласт. С этого момента времени (точка 4) начинается приток жидкости из пласта в скважину и далее через НКТ на поверхность. Следовательно, третий период характеризует работу компрессора и скважины в режиме отбора. Гидродинамические условия в скважине в этот период аналогичны режимом отбора при постоянном забойном давлении (состояние IIIна 1а).

Приток жидкости из пласта против перфорированного пласта отмечается ростом температурной аномалии (разогревом), вследствие дросселирования жидкости. Для переходных режимов в пласте после пуска процесс дросселирования отличается от случая скважин, работающих в режиме длительного отбора. Изменение температуры на забое скважины для малых времен после пуска много меньше максимально возможного дроссельного разогрева εΔР. Приток газа из пласта отмечается снижением температуры в скважине относительно первоначальной температуры.

Величина разогрева жидкости при фильтрации существенным образом определяется значением коэффициента подвижности К/μ. При постоянном К (однородный пласт) разогрев растет с уменьшением вязкости жидкости. Вначале разогрев воды при одной и той же депрессии может быть больше, чем нефти. С увеличением времени разогрев нефти становится больше, в этом смысле можно говорить, что температурная аномалия в интервале калориметрического смешивания при притоке по отдельным пропласткам (пластам) воды и нефти носит инверсионный характер (см. рис. 5.а).

При постоянном μс ростом проницаемости температура растет, т.е. термограмма в интервале притока в переходном режиме после пуска скважины зависит от проницаемости пласта. Причем эта зависимость однозначна для всех t, т.е. аномалии калориметрического смешивания, обусловленные различием коллекторских свойств пласта по его толщине сохраняют во времени свой знак.

Использование современных высокочувствительных термометров позволяет практически сразу после появления жидкости из пласта регистрировать аномалию дросселирования. Время, по истечении которого температурная аномалия после пуска становится регистрируемой, определяется как

Например, для q = 1 м3 /сут.м, R = 5 м, εΔР2 = 1 °С, ΔТМ = 0,01 °С соответствующее время tp = 1 мин.

Из-за различия подвижностей нефти и воды первым обычно вступает в работу водоносный пласт. При этом абсолютная величина изменения температуры при отборе (так же, как и при нагнетании) в водоносном пласте будет больше, чем в нефтеносном. Для выделения обводненных пластов поэтому можно использовать сочетание режимов нагнетания и отбора жидкости (см. схематические кривые на рис. 5б).

а) Рис. 6.5. Определение нефте-водопритоков а - по инверсии калориметрического смешивания после пуска скважины; б - по особенностям образования температурных аномалий при кратковременном нагнетании и отборе жидкости.


Пуск скважины в эксплуатацию вызывает приток жидкости из пласта, что в свою очередь приводит к возникновению в стволе восходящего потока. Характерной особенностью в распределении температуры в этот период является то, что при наблюдающемся росте температуры против перфорированного пласта на термограммах отмечается температурная аномалия («излом» кривой), которая перемещается во времени со скоростью потока. Существенные изменения градиента температуры на кривых объясняются продвижением объема жидкости, вышедшей из пласта в первые моменты времени при переходе к режиму отбора. Следует заметить, что определенное влияние на характер регистрируемой термограммы после пуска, в том числе и на «излом» кривой, оказывает не мгновенность регистрации температурной кривой по стволу скважины (или временной эффект записи) см.4б.

Начало изменения температурного градиента (при движении сверху) соответствует границе контактирования жидкости, находившейся в скважине против перфорированного пласта с жидкостью, вытекающей из пласта. Относительная стабилизация температуры в интервале пласта приводит в последующие моменты времени к выравниванию температурной аномалии по стволу скважины. При соответствующих условиях «излом» температурной кривой можно использовать для оценки дебита восходящего потока жидкости.

При наличии в разрезе скважины нескольких перфорированных (отдающих) пластов, как и в длительно работающих скважинах в пределах вышележащих горизонтов проявляется эффект калориметрического смешивания. Величина калориметрического эффекта, как известно, зависит от дебитов и температур смешивающихся потоков. В случае совпадения температур потоков-восходящего снизу и поступающего из пласта - интервал поступления жидкости в скважину на термограмме может не отмечаться. Кроме того, если расход жидкости поднимающейся снизу значителен по сравнению с притоком из верхнего пласта, то выделение последнего по термограммам также затруднительно. Однако, учитывая наличие в стволе скважины после пуска движущегося «фронта» жидкости, можно «регулировать» величину аномалии в верхних пластах, увеличивая (или уменьшая) ее выбором соответствующего времени регистрации термограммы после начала притока жидкости из пласта, т.е. подбирая так начало регистрации, чтобы «фронт» жидкости из нижнего пласта не дошел до верхнего.

Установление температуры в интервале перфорации и выше, в основном, происходит за счет конвективного переноса тепла. Ниже интервала перфорации установление теплового поля в скважине осуществляется путем кондуктивного переноса (теплопроводности), и этот процесс очень медленный. Вследствие изменения температуры перфорированного горизонта в среде, подстилающей пласт, возникает одномерный нестационарный поток тепла. Зона нарушения первоначального (геотермического) распределения температуры в зумпфе (расстояние от нижних перфорированных дыр до точки zr - точки выхода температурной кривой на геотерму) за счет теплоотдачи от работающего пласта не превышает 1 м вследствие кратковременности работы скважины.

В случае промывки скважины пресной водой перед ее освоением при поступлении из пласта минерализованной воды может возникнуть гравитационная конвекция в зумпфе. Последняя может привести к значительным затяжкам температурной аномалии в зумпфе. Причем характер аномалии в этом интервале будет аналогичен случаю заколонного движения жидкости (см. результаты лабораторного эксперимента на рис.6). Здесь необходимо проведение исследований методами состава (Рез или ГГП) до и после вызова притока жидкости из пласта.

Резкое снижение забойного давления вследствие прорыва воздуха через НКТ приводит к проявлению в скважине эффекта адиабатического расширения. Особенно четко этот эффект отмечается в зумпфе скважины. На термограмме, зарегистрированной в этот период, наблюдается скачок (смещение) температурной кривой влево по шкале температур. Абсолютные значения температуры в этом интервале уменьшаются. В дальнейшем, в зависимости от длительности III периода, наблюдается медленное смещение температурной кривой в зумпфе к первоначальному ее положению вследствие теплообмена с окружающими скважину горными породами. На рис.6.4б представлены схематические распределения температур при работе скважины в режиме отбора.

Прекращение подачи воздуха, вследствие отключения компрессора, вызывает увеличение забойного давления в скважине. 1V период, таким образом, характеризует процесс восстановления забойного давления до пластового (участок кривой 5-6 на рис.1б). При этом происходит уменьшение депрессии при продолжающемся притоке жидкости из пласта. Жидкость из пласта, также как и из НКТ, поступает в межтрубное пространство скважины и приводит к повышению уровня (состояние IV на рис.1а). В скважине и в пласте в этот период наблюдается процесс восстановления температурного поля, нарушенного опробованием. Здесь можно выделить два основных процесса, определяющих характер изменения температуры в скважине:

Рис. 6. Распределение температуры в зумпфе модельной скважины. Кривые 1,2,3,4 через 15,35,65 и 120 мин. после начала снижения температуры в пласте (режим нагнетания). Кривые 5,6,7,8 через 5,35,120,240 мин. после увеличения температуры в пласте (режим отбора).

конвективный перенос тепла жидкостью, притекающей из пласта после прекращения работы компрессора, и процесс теплообмена жидкости с окружающей средой за счет теплопроводности. При этом основное снижение температуры в пласте после остановки скважины обусловлено продолжающимся притоком жидкости из пласта.

Анализ экспериментального материала показывает, что после прекращения работы компрессора против отдающих пластов, как правило, наблюдается уменьшение величины температурной аномалии. Причем в первые моменты времени темп восстановления температуры высокий вследствие преобладания при этом процесса конвективного восстановления. Полного восстановления первоначальной температуры в пласте к моменту прекращения притока обычно не происходит и дальнейшее расформирование остаточного температурного профиля осуществляется за счет теплопроводности.