Смекни!
smekni.com

Оценка гидрогеологических и инженерно геологических условий Стойле (стр. 2 из 6)

Западная часть залежи характеризуется относительно простым строением и равномерной рудоносностью; содержание Feобщ колеблется в блоках от 32,25 до 36,92%; Fe связанного с магнетитом – от 28,54 до 29,77%.

Центральная часть залежи имеет сложное внутреннее строение по сравнению с другими частями и характеризуется наименьшей рудоносностью, что обусловлено большим количеством даек диорит-порфиритов, наличием зон дробления и повышенным количеством сланцев в рудной зоне. При среднем объемном количестве даек в контуре, равном 3,3%, в центральной части количество их составляет 6,3-12,7% общего объема. Содержание Feобщ в блоках колеблется от 32,7 до 34,06%, связанного с магнетитом от 26,36 до 28,3%. На участке замыкания центральной антиклинали, на границе со сланцами, наблюдается обеднение железистых кварцитов – содержание Feраст снижается до 22-25%, связанного с магнетитом до 16,2-18,2%.

Северо-восточная часть залежи характеризуется сложным строением и относительно высокой рудоносностью. Содержание Feобщ составляет 34,52-36,10%, связанного с магнетитом – 27,6-29,38%. Наиболее высокое содержание Feобщ (38,27-39,39%) и связанного с магнетитом (33,10-33,77%) наблюдается в северо-восточной части месторождения. Юго-восточная часть залежи характеризуется относительно простым строением. Но в пределах ее развито наибольшее количество даек диорит-порфиритов.

Общая рудоносность по строению структуры юго-восточной части выдержана. Содержание Feобщ в блоках составляет от 33,4 до 34,84%, а связанного с магнетитом от 27,3 до 28,55%. Здесь так же, как и в центрально части залежи, наблюдается обеднение железистых кварцитов.

Гидрогеологические условия месторождения

Гидрогеологические условия месторождения обусловлены геоморфологическими и структурными особенностями его расположения на водораздельном плато, расчлененным глубоко врезанной овражной сетью, и ограничением с севера, юга и востока долинами рек Осколька, Чуфички, Оскола, а также двухъярусным строением массива.

На месторождении имеет сплошное распространение сеноман-альбский каньон – туронский и рудно-кристаллический водоносные горизонты (табл.2). В целом для них характерна гидравлическая взаимность и связь с поверхностными водами, невыдержанность мощности и состава вмещающих пород, однородность состава и незначительная минерализация вод, общность источников питания и дренирования.

Приуроченные к сеноман-альбской толще, водоносный горизонт характеризуется безнапорным или слабо напорным режимом. Расходы горизонта компенсируются инфильтрующей частью дождевых и талых вод в местах выхода трещиноватых меловых пород на поверхность. Юрские и неокомские песчано-глинистые отложения вследствие их частичного размыва являются лишь относительным водоупором.

Рудно-кристаллический напорный горизонт приурочен к выветренной зоне докембрийского комплекса пород. Водообильность горизонта определяется характером трещиноватости пород. Питание осуществляется за счет вышележащего водоносного горизонта на участках выветривания или в местах малой мощности юрских и неокомских песчано-глинистых отложений. Среднее значение коэффициента фильтрации для выветривания кварцитов 2-2,5 м/сут, невыветрелых 0,02-0,07 м/сут. В связи со сложными гидрогеологическими условиями разработка месторождения производится при предварительном осушении, осуществляемом комбинированным способом – глубинным водоотливом.


Таблица 2

Водоносный горизонт Режим ПреобладающаяМощность, м Абсолютная отметкастатического уровня,м Качественная характеристика водоносного горизонта Коэффициент фильтрации, м/сут Водоотдача, %
питание разгрузка
I Мергельно-меловой подгоризонт - 15-20 - - - 2,5 1-5
II Песчаный подгоризонт - 28-35 137-142 - - 12-25 25-40
III Песчано-меловой горизонт - 40-50 137-142 Инфильт-рационное Долина р.Осколец 10-20 15-34
IV Рудно-кристаллический горизонт 70-80 20-40 137-142 За счет перетекания из вышележащих водоносных горизонтов Движение потока в сторону Днепровско-Донецкой впадины 0,1-0,5 0,5-2

Инженерно-геологические условия

Геологический разрез месторождения характеризуется многоярусным строением; инженерно-геологические ярусы составляют два структурных этажа – верхний и нижний.

Верхний этаж представлен породами осадочного комплекса. Лессовидные суглинки по физико-механическим свойствам близки к аналогичным породам Михайловского месторождения. Наиболее слабыми являются аллювиальные глины. Мергельно-меловые породы представлены трещиноватым мелом, переходящим на отдельных участках в трещиноватый мергель. Прочность этих пород определяется трещиноватостью массива. Высыхание мелов в приповерхностных зонах и процессы выветривания приводят к их осыпанию. Под воздействием динамических нагрузок происходят тектонические изменения. Сеноман-альбские пески представлены средне- и мелкозернистыми разностями, слабо сцементированными окислами железа. Пески обладают хорошей водоотдачей, коэффициент неоднородности Кн=3-5, на участке высачивания отмечается оплывание, в сцементированных разностях – фильтрационный вынос вдоль трещин.

Неокомские и юрские глинистые пески и песчаные гидрослюдистые глины достаточно однородны по механическим свойствам. Небольшим набуханием обладают юрские глины при нормальных нагрузках до 2 кг/см2 (0,2 МПа) (в песчаных глинах неокома около 0,5 кг/см2 (0,05 МПа)). Ощутимое разупрочнение пород (сцепление падает до 50% исходного) отмечается в местах удаленных от поверхности обнажения на 4-5 м; с увеличением глубины прочность пород не уменьшается. Девонские отложения имеют ограниченное распространение и состоят из нерудных брекчий, песчаников, пестро-цветных плотных глин, характеризуются относительно высоким показателем прочности. Нижний этаж представлен скальными и полускальными разностями, при этом наименее прочными являются межрудные сланцы, породы даек и рыхлых руд. На участках распространения рыхлых разновидностей руд в ходе разработки отмечаются осыпи; обводненность пород рудной толщи не влияет на их устойчивость.


4. Расчетная часть

4.1 Определение гидрогеологических параметров

I. Расчет для безнапорного водоносного горизонта

1. Гидравлический градиент – это потеря напора на единицу длины пути фильтрации:

H1-H2 177-176

i = = = 0.002

l 540

2. Приведенная скорость фильтрации - скорость, принимаемая из условий проницаемости минерального скелета породы- определяется по формуле Дарси:

v=i* kф=0,002*5=0,01 м/сут,

где kф =5 м/сут – коэффициент фильтрации (для БВГ).

3. Действительная (фактическая) скорость фильтрации воды в породах с учетом их физического состояния(трещина, поры и т.п.)

V 0.01

U= = =0.5м/сут,

µ 0.02

где µ - эффективная пористость породы, численно равная величине водоотдачи.

4. Глубина залегания зеркала воды определяется разностью абсолютных отметок поверхности земли и зеркала воды, взятых для одной и той же точки.


т.1 187-177=10м

т.2 188-176=12м

5. Мощность водоносного горизонта определяется разностью абсолютной отметки зеркала воды и кровли водоупора, на котором сформировался водоносный горизонт.

т.1 177-154=23м

т.2 176-153,5=22,5м

II. Расчетная часть для напорного водоносного горизонта

1. Определяем гидравлический градиент

H1-H2 173-172

i = = = 0,003

l 350

2. Приведенная скорость фильтрации

v=ik=0,003*12=0,036 м/сут,

где k=12 м/сут – коэффициент фильтрации для НБГ

3. Действительная (фактическая) скорость фильтрации воды.

V 0.036

U= = =3,6 м/сут,

µ 0.01

где µ - эффективная пористость породы, численно равная величине водоотдачи.

4. Глубина залегания ПУНВГ (установившегося пьезометрического уровня) равна разности отметок поверхности земли и отметок ПУНВГ.

т.1 188-173=15м

т.2 187-172=15м

5. Мощность НВГ равна мощности вмещающих его трещиноватых известняков перхуровского возраста и составляет 15м

6. Определяем напорность НВГ, которая равна разности отметок ПУНВГ и кровли водоносного пласта (почвы верхнего водоупора)

т.1 173-147,5=25,5м