Смекни!
smekni.com

Подготовка газа к транспортировке 2 (стр. 4 из 12)

2.1. Особенности дальнего транспорта природных газов

Основные месторождения газа в России расположены на значитель­ном расстоянии от крупных потребителей. Подача газа к ним осуществ­ляется по газопроводам различного диаметра. При прохождении газа возникает трение потока о стенку трубы, что вызывает потерю давления. Например, при расходе газа 90 млн.нм3/ сут по трубе 1400 мм давление убывает с 7,6 до5,ЗМПа на участке L= 110 км. Поэтому транспортиро­вать природный газ в достаточном количестве и на большие расстояния, только за счет естественного пластового давления нельзя. Для этой цели необходимо строить компрессорные станции (КС), которые устанавлива­ются на трассе газопровода через каждые 100 - 150 км.

Перед подачей газа в магистральные газопроводы его необходимо подготовить к транспорту на головных сооружениях, которые распола­гаются около газовых месторождений. Подготовка газа заключается в очистке его от механических примесей, осушки от газового конденсата и влаги, а также удаления при их наличии, побочных продуктов: серо­водорода, углекислоты и т.д.

При падении пластового давления, около газовых месторождений строят, так называемые, дожимные компрессорные станции, где давле­ние газа перед подачей его на КС магистрального газопровода подни­мают до уровня 5,5 — 7,5 МПа. На магистральном газопроводе около крупных потребителей газа сооружаются газораспределительные стан­ции для газоснабжения потребителей.

Все это свидетельствует о том, что транспорт газа на большие рас­стояния представляет собой весьма сложную техническую задачу, от решения которой во многом зависит развитие газовой промышленности и экономики страны в целом.

На газопроводах в качестве энергопривода КС используются газо­турбинные установки, электродвигатели и газомотокомпрессоры - комбинированный агрегат, в котором привод поршневого компрессо­ра осуществляется от коленчатого вала двигателя внутреннего сгора­ния.

Вид привода компрессорных станций и ее мощность в основном оп­ределяются пропускной способностью газопровода. Для станций под­земного хранения газа, где требуются большие степени сжатия и малые расходы используются газомотокомпрессоры, а также газотурбинные агрегаты типа «Солар» и ГПА-Ц-6,3, которые могут обеспечивать за­данные степени сжатия. Для газопроводов с большой пропускной спо­собностью наиболее эффективное применение находят центробежные нагнетатели с приводом от газотурбинных установок или электродви­гателей.

Режим работы современного газопровода, несмотря на наличие стан­ций подземного хранения газа, являющихся накопителями природного газа, характеризуется неравномерностью подачи газа в течение года. В зимнее время газопроводы работают в режиме максимального обеспе­чения транспорта газа. В случае увеличения расходов, пополнение сис­темы обеспечивается за счет отбора газа из подземного хранилища. В летнее время, когда потребление газа снижается, загрузка газопрово­дов обеспечивается за счет закачки газа на станцию подземного хране­ния газа.

Оборудование и обвязка компрессорных станций приспособлены к переменному режиму работы газопровода. Количество газа, перекачи­ваемого через КС, можно регулировать включением и отключением чис­ла работающих газоперекачивающих агрегатов (ГПА), изменением ча­стоты вращения силовой турбины у ГПА с газотурбинным приводом и т.п. Однако во всех случаях стремятся к тому, чтобы необходимое коли­чество газа перекачать меньшим числом агрегатов, что приводит есте­ственно к меньшему расходу топливного газа на нужды перекачки и, как следствие, к увеличению подачи товарного газа по газопроводу.

Регулирование пропускной способности газопровода отключением работы отдельных КС при расчетной производительности газопровода обычно не практикуется из-за перерасхода энергозатрат на компремирование газа при такой схеме работы. И только в тех случаях, когда подача газа по газопроводу заметно снижается сравнительно с плано­вой (летом), отдельные КС могут быть временно остановлены.

Переменный режим работы компрессорной станции приводит к сни­жению загрузки газоперекачивающих агрегатов и, как следствие, к пе­рерасходу топливного газа из-за отклонения от оптимального КПД ГПА.

Характерный вид графиков переменного режима работы газопрово­да при изменении его производительности показан на рис. 1. Из рисунка видно, что наибольшее влияние на режим работы КС и отдельных ГПА оказывают сезонные изменения производительности газопровода. Обычно максимум подачи газа приходится на декабрь- январь, а мини­мум - на летние месяцы года.


Рис. 1. Схема сезонного колебания расхода газа крупного промышленного

центра: А - ТЭЦ; Б - промышленность (включая котельные); В - отопление;

Г - коммунально-бытовые потребители

Расход газа, млн.нм3/сут, через трубопровод длиной L км, определя­ется следующей формулой (при давлении 0,1013 МПа и 20°С):

Q=105,1*10,2*10-6*D2,5*

, (1)

где D - внутренний диаметр газопровода, мм; Рни Рк - давление газа соответственно в начале и конце участка газопровода, МПа; λ= 0,009 - коэффициент гидравлического сопротивления; Δ- относи­тельная плотность газа по воздуху; Tср - средняя температура по длине газопровода, К; Zср - средний по длине газопровода коэффициент сжи­маемости газа; L - длина участка газопровода, км.

На основании этой формулы можно вычислить пропускную способ­ность газопровода на участке между двумя КС.

Зависимость пропускной способности газопровода от давления показана на рис.2.2.

Затраты мощности КС можно определить по формуле:

, (2)

где к - показатель адиабаты; ηн- адиабатический КПД нагнетателя; Твх. - температура газа на входе в нагнетатель, К. При zR=46 кг*м/кг*К, к=1,31, Твх= 293 К, L=100 км, ηн= 0,82, Δ= 0,6; 1,36*10-4-переводной коэффициент, с использованием соотношений (1) и (2) получаем за­висимость изменения мощности от производительности.

Расчеты показывают, что для прокачки Q = 90 млн.нм3/ сутки, на уча­стке трубопровода Ø1400 мм, L = 100 км необходимо затратить мощность = 50 МВт. При увеличении производительности на 30 % от проектной, мощность необходимо увеличивать в два с лишним раза при сохране­нии конечного давления.

С ростом пропускной способности газопроводов за счет увеличения диаметра трубы и рабочего давления растет температура газа, протека­ющего по трубопроводу. Для повышения эффективности работы газо­провода и прежде всего для снижения мощности на транспортировку газа необходимо на выходе каждой КС устанавливать аппараты воз­душного охлаждения газа. Снижение температуры необходимо еще и lля сохранения изоляции трубы.

Важным фактором по снижению энергозатрат па транспорт газа является своевременная и эффективная очистка внутренней полости трубопровода от разного вида загрязнений. Внутреннее состояние трубопровода довольно сильно влияет на изменение энергетических затрат, связанных с преодолением сил гидравлического сопротивле­ния во внутренней полости трубопровода. Создание высокоэффек­тивных очистных устройств с большим моторесурсом позволяет ста­бильно поддерживать производительность газопровода на проектном уровне, снижать энергозатраты на транспорт газа примерно на
10-15%.

Для уменьшения затрат мощности КС на перекачку газа, увеличения пропускной способности газопровода и экономии энергоресурсов на перекачку газа, всегда выгодно поддерживать максимальное давление газа в трубопроводе, снижать температуру перекачиваемого газа за счет его охлаждения на станциях, использовать газопроводы большего диаметра, периодически осуществлять очистку внутренней полости тру­бопровода.

2.2. Назначение и описание компрессорной станции.

При движении газа по трубопроводу происходит потеря давления из-за разного гидравлического сопротивления по длине газопровода. Падение давления вызывает снижение пропускной способности газо­провода. Одновременно понижается температура транспортируемого газа, главным образом, из-за передачи теплоты от газа через стенку тру­бопровода в почву и атмосферу.

Для поддержания заданного расхода транспортируемого газа путем повышения давления через определенные расстояния вдоль трассы га­зопровода, как отмечалось выше, устанавливаются компрессорные станции.

Перепад давления на участке между КС определяет степень повы­шения давления в газоперекачивающих агрегатах. Давление газа в га­зопроводе в конце участка равно давлению на входе в газоперекачива­ющий агрегат, а давление в начале участка равно давлению на выходе из АВО газа.

Современная компрессорная станция (КС) - это сложное инженер­ное сооружение, обеспечивающее основные технологические процессы по подготовке и транспорту природного газа

Принципиальная схема расположения КС вдоль трассы магистраль­ного газопровода приведена на рис. 2, где одновременно схематично показаны изменения давления и температуры газа между компрессор­ными станциями.


Компрессорная станция - неотъемлемая и составная часть магист­рального газопровода, обеспечивающая транспорт газа с помощью энер­гетического оборудования, установленного на КС. Она служит управ­ляющим элементом в комплексе сооружений, входящих в магистраль­ный газопровод. Именно параметрами работы КС определяется режим работы газопровода. Наличие КС позволяет регулировать режим рабо­ты газопровода при колебаниях потребления газа, максимально исполь­зуя при этом аккумулирующую способность газопровода.