2.1. Особенности дальнего транспорта природных газов
Основные месторождения газа в России расположены на значительном расстоянии от крупных потребителей. Подача газа к ним осуществляется по газопроводам различного диаметра. При прохождении газа возникает трение потока о стенку трубы, что вызывает потерю давления. Например, при расходе газа 90 млн.нм3/ сут по трубе 1400 мм давление убывает с 7,6 до5,ЗМПа на участке L= 110 км. Поэтому транспортировать природный газ в достаточном количестве и на большие расстояния, только за счет естественного пластового давления нельзя. Для этой цели необходимо строить компрессорные станции (КС), которые устанавливаются на трассе газопровода через каждые 100 - 150 км.
Перед подачей газа в магистральные газопроводы его необходимо подготовить к транспорту на головных сооружениях, которые располагаются около газовых месторождений. Подготовка газа заключается в очистке его от механических примесей, осушки от газового конденсата и влаги, а также удаления при их наличии, побочных продуктов: сероводорода, углекислоты и т.д.
При падении пластового давления, около газовых месторождений строят, так называемые, дожимные компрессорные станции, где давление газа перед подачей его на КС магистрального газопровода поднимают до уровня 5,5 — 7,5 МПа. На магистральном газопроводе около крупных потребителей газа сооружаются газораспределительные станции для газоснабжения потребителей.
Все это свидетельствует о том, что транспорт газа на большие расстояния представляет собой весьма сложную техническую задачу, от решения которой во многом зависит развитие газовой промышленности и экономики страны в целом.
На газопроводах в качестве энергопривода КС используются газотурбинные установки, электродвигатели и газомотокомпрессоры - комбинированный агрегат, в котором привод поршневого компрессора осуществляется от коленчатого вала двигателя внутреннего сгорания.
Вид привода компрессорных станций и ее мощность в основном определяются пропускной способностью газопровода. Для станций подземного хранения газа, где требуются большие степени сжатия и малые расходы используются газомотокомпрессоры, а также газотурбинные агрегаты типа «Солар» и ГПА-Ц-6,3, которые могут обеспечивать заданные степени сжатия. Для газопроводов с большой пропускной способностью наиболее эффективное применение находят центробежные нагнетатели с приводом от газотурбинных установок или электродвигателей.
Режим работы современного газопровода, несмотря на наличие станций подземного хранения газа, являющихся накопителями природного газа, характеризуется неравномерностью подачи газа в течение года. В зимнее время газопроводы работают в режиме максимального обеспечения транспорта газа. В случае увеличения расходов, пополнение системы обеспечивается за счет отбора газа из подземного хранилища. В летнее время, когда потребление газа снижается, загрузка газопроводов обеспечивается за счет закачки газа на станцию подземного хранения газа.
Оборудование и обвязка компрессорных станций приспособлены к переменному режиму работы газопровода. Количество газа, перекачиваемого через КС, можно регулировать включением и отключением числа работающих газоперекачивающих агрегатов (ГПА), изменением частоты вращения силовой турбины у ГПА с газотурбинным приводом и т.п. Однако во всех случаях стремятся к тому, чтобы необходимое количество газа перекачать меньшим числом агрегатов, что приводит естественно к меньшему расходу топливного газа на нужды перекачки и, как следствие, к увеличению подачи товарного газа по газопроводу.
Регулирование пропускной способности газопровода отключением работы отдельных КС при расчетной производительности газопровода обычно не практикуется из-за перерасхода энергозатрат на компремирование газа при такой схеме работы. И только в тех случаях, когда подача газа по газопроводу заметно снижается сравнительно с плановой (летом), отдельные КС могут быть временно остановлены.
Переменный режим работы компрессорной станции приводит к снижению загрузки газоперекачивающих агрегатов и, как следствие, к перерасходу топливного газа из-за отклонения от оптимального КПД ГПА.
Характерный вид графиков переменного режима работы газопровода при изменении его производительности показан на рис. 1. Из рисунка видно, что наибольшее влияние на режим работы КС и отдельных ГПА оказывают сезонные изменения производительности газопровода. Обычно максимум подачи газа приходится на декабрь- январь, а минимум - на летние месяцы года.
Рис. 1. Схема сезонного колебания расхода газа крупного промышленного
центра: А - ТЭЦ; Б - промышленность (включая котельные); В - отопление;
Г - коммунально-бытовые потребители
Расход газа, млн.нм3/сут, через трубопровод длиной L км, определяется следующей формулой (при давлении 0,1013 МПа и 20°С):
Q=105,1*10,2*10-6*D2,5*
, (1)где D - внутренний диаметр газопровода, мм; Рни Рк - давление газа соответственно в начале и конце участка газопровода, МПа; λ= 0,009 - коэффициент гидравлического сопротивления; Δ- относительная плотность газа по воздуху; Tср - средняя температура по длине газопровода, К; Zср - средний по длине газопровода коэффициент сжимаемости газа; L - длина участка газопровода, км.
На основании этой формулы можно вычислить пропускную способность газопровода на участке между двумя КС.
Зависимость пропускной способности газопровода от давления показана на рис.2.2.
Затраты мощности КС можно определить по формуле:
, (2)
где к - показатель адиабаты; ηн- адиабатический КПД нагнетателя; Твх. - температура газа на входе в нагнетатель, К. При zR=46 кг*м/кг*К, к=1,31, Твх= 293 К, L=100 км, ηн= 0,82, Δ= 0,6; 1,36*10-4-переводной коэффициент, с использованием соотношений (1) и (2) получаем зависимость изменения мощности от производительности.
Расчеты показывают, что для прокачки Q = 90 млн.нм3/ сутки, на участке трубопровода Ø1400 мм, L = 100 км необходимо затратить мощность = 50 МВт. При увеличении производительности на 30 % от проектной, мощность необходимо увеличивать в два с лишним раза при сохранении конечного давления.
С ростом пропускной способности газопроводов за счет увеличения диаметра трубы и рабочего давления растет температура газа, протекающего по трубопроводу. Для повышения эффективности работы газопровода и прежде всего для снижения мощности на транспортировку газа необходимо на выходе каждой КС устанавливать аппараты воздушного охлаждения газа. Снижение температуры необходимо еще и lля сохранения изоляции трубы.
Важным фактором по снижению энергозатрат па транспорт газа является своевременная и эффективная очистка внутренней полости трубопровода от разного вида загрязнений. Внутреннее состояние трубопровода довольно сильно влияет на изменение энергетических затрат, связанных с преодолением сил гидравлического сопротивления во внутренней полости трубопровода. Создание высокоэффективных очистных устройств с большим моторесурсом позволяет стабильно поддерживать производительность газопровода на проектном уровне, снижать энергозатраты на транспорт газа примерно на
10-15%.
Для уменьшения затрат мощности КС на перекачку газа, увеличения пропускной способности газопровода и экономии энергоресурсов на перекачку газа, всегда выгодно поддерживать максимальное давление газа в трубопроводе, снижать температуру перекачиваемого газа за счет его охлаждения на станциях, использовать газопроводы большего диаметра, периодически осуществлять очистку внутренней полости трубопровода.
2.2. Назначение и описание компрессорной станции.
При движении газа по трубопроводу происходит потеря давления из-за разного гидравлического сопротивления по длине газопровода. Падение давления вызывает снижение пропускной способности газопровода. Одновременно понижается температура транспортируемого газа, главным образом, из-за передачи теплоты от газа через стенку трубопровода в почву и атмосферу.
Для поддержания заданного расхода транспортируемого газа путем повышения давления через определенные расстояния вдоль трассы газопровода, как отмечалось выше, устанавливаются компрессорные станции.
Перепад давления на участке между КС определяет степень повышения давления в газоперекачивающих агрегатах. Давление газа в газопроводе в конце участка равно давлению на входе в газоперекачивающий агрегат, а давление в начале участка равно давлению на выходе из АВО газа.
Современная компрессорная станция (КС) - это сложное инженерное сооружение, обеспечивающее основные технологические процессы по подготовке и транспорту природного газа
Принципиальная схема расположения КС вдоль трассы магистрального газопровода приведена на рис. 2, где одновременно схематично показаны изменения давления и температуры газа между компрессорными станциями.
Компрессорная станция - неотъемлемая и составная часть магистрального газопровода, обеспечивающая транспорт газа с помощью энергетического оборудования, установленного на КС. Она служит управляющим элементом в комплексе сооружений, входящих в магистральный газопровод. Именно параметрами работы КС определяется режим работы газопровода. Наличие КС позволяет регулировать режим работы газопровода при колебаниях потребления газа, максимально используя при этом аккумулирующую способность газопровода.