Смекни!
smekni.com

Подготовка газа к транспортировке 2 (стр. 5 из 12)

На рис. 3 показана принципиальная схема компоновки основного оборудования компрессорной станции, состоящей из 3 ГПА. В соответ­ствии с этим рисунком в состав основного оборудования входит: 1 - узел подключения КС к магистральному газопроводу; 2 - камеры запуска и приема очистного устройства магистрального газопровода; 3 - установ­ка очистки технологического газа, состоящая из пылеуловителей и фильтр-сепараторов; 4- установка охлаждения технологического газа; 5- газо­перекачивающие агрегаты; 6 - технологические трубопроводы обвязки компрессорной станции; 7 - запорная арматура технологических трубо­проводов обвязки агрегатов; 8 - установка подготовки пускового и топ­ливного газа; 9 - установка подготовки импульсного газа; 10 - различ­ное вспомогательное оборудование; 11 - энергетическое оборудование; 12 - главный щит управления и система телемеханики; 13 - оборудование электрохимической защиты трубопроводов обвязки КС.


Рис. 3. Принципиальная схема компоновки основного оборудования компрессорной станции

На магистральных газопроводах различают три основных типа КС: головные компрессорные станции, линейные компрессорные станции и дожимные компрессорные станции.

Головные компрессорные станции (ГКС) устанавливаются непосред­ственно по ходу газа после газового месторождения. По мере добычи газа происходит падение давления в месторождении до уровня,когда транспортировать его в необходимом количестве без компремирования уже нельзя. Поэтому для поддержания необходимого давления и расхо­да строятся головные компрессорные станции. Назначением ГКС явля­ется создание необходимого давления технологического газа для его дальнейшего транспорта по магистральным газопроводам. Принципи­альным отличием ГКС от линейных станций является высокая степень сжатия на станции, обеспечиваемая последовательной работой несколь­ких ГПА с центробежными нагнетателями или поршневыми газомото-компрессорами. На ГКС предъявляются повышенные требования к ка­честву подготовки технологического газа.

Линейные компрессорные станции устанавливаются на магистральных газопроводах, как правило, через 100-150 км. Назначением КС является компремирование поступающего на станцию природного газа, с давления входа до давления выхода, обусловленных проектными дан­ными. Тем самым обеспечивается постоянный заданный расход газа по магистральному газопроводу. В России строятся линейные газопрово­ды в основном на давление Рпр=5,5 МПа и Рпр=7,5 МПа.

Дожимные компрессорные станции (ДКС) устанавливаются на под­земных хранилищах газа (ПХГ). Назначением ДКС является подача газа в подземное хранилище газа от магистрального газопровода и отбор природного газа из подземного хранилища (как правило, в зимний пе­риод времени) для последующей подачи его в магистральный газопро­вод или непосредственно потребителям газа. ДКС строятся также на газовом месторождении при падении пластового давления, ниже давле­ния в магистральном трубопроводе. Отличительной особенностью ДКС от линейных КС является высокая степень сжатия 2-4, улучшенная под­готовка технологического газа (осушители, сепараторы, пылеуловите­ли), поступающего из подземного хранилища с целью его очистки от механических примесей и влаги, выносимой с газом.

Около потребителей газа строятся также газораспределительные станции (ГРС), где газ редуцируется до необходимого давления (Р=1,2;0,6; 0,3 МПа) перед подачей его в сети газового хозяйства.

В состав ГПЗ входят следующие основные узлы:

1) очистка газа от серосодержащих соединений и утилизация серосодержащих соединений;

2) осушка газа;

3) компримирование газа;

4) выделение фракций сжиженных углеводородных (нефтяных) газов и этана;

5) разделение фракций сжиженных нефтяных газов (газофракционирование);

6) получение гелия и других инертных газов.

Газоперерабатывающие заводы, работающие на попутных газах, могут быть скооперированы с установками стабилизации нефти. Газоперерабатывающие заводы, обслуживающие газоконденсатные месторождения, имеют в своем составе установки по переработке газового конденсата (очистка, стабилизация и разделение на фракции). На рис. 4 представлена структурная схема газоперерабатывающего завода (без стадий выделения этана и редких газов).


Рис. 4. Структурная схема газоперерабатывающего завода.

3.ПОДГОТОВКА ГАЗА К ТРАНСПОРТУ

3.1.ОЧИСТКА ГАЗА ОТ МЕХАНИЧЕСКИХ ПРИМЕСЕЙ

Система подготовки технологического газа служит для очистки газа от механических примесей и жидкости перед подачей его потребителю в соответствии с требованиями ГОСТ 5542-87.

При добыче и транспортировке в природном газе содержатся раз­личного рода примеси: песок, сварной шлам, конденсат тяжелых угле­водородов, вода, масло и т.д. Источником загрязнения природного газа является призабойная зона скважины, постепенно разрушающаяся и загрязняющая газ. Подготовка газа осуществляется на промыслах, от эффективности работы которых зависит и качество газа. Механические примеси попадают в газопровод как в процессе его строительства, так и при эксплуатации.

Наличие механических примесей и конденсата в газе приводит к преж­девременному износу трубопровода, запорной арматуры, рабочих ко­лес нагнетателей и, как следствие, снижению показателей надежности и экономичности работы компрессорных станций и в целом газопровода.

Все это приводит к необходимости устанавливать на КС различные системы очистки технологического газа. Первое время на КС для очис­тки газа широко использовали масляные пылеуловители, ко­торые обеспечивали достаточно высокую степень очистки (до 97-98%)). Масляные пылеуловители работают по принципу мокрого улавливания разного рода смесей, находящихся в газе. Примеси, смоченные маслом, сепарируются из потока газа, само масло очищается, регенерируется и вновь направляется в масленый пылеуловитель. Масляные пылеулови­тели чаще выполнялись в виде вертикальных сосудов, принцип действия которых, хорошо иллюстрируется схемой рис. 5.

Очищаемый газ поступает в нижнюю секцию пылеуловителя, ударя­ется в отбойный козырек 8 и, соприкасаясь с поверхностью масла, меня­ет направление своего движения. При этом наиболее крупные частицы остаются в масле. С большой скоростью газ проходит по контактным трубкам 3 в осадительную секцию II, где скорость газа резко снижается и частицы пыли по дренажным трубкам стекают в нижнюю часть пыле­уловителя I. Затем газ поступает в отбойную секцию III, где в сепара­торном устройстве 1 происходит окончательная очистка газа.

Недостатками масляных пылеуловителей являются: наличие посто­янного безвозвратного расхода масла, необходимость очистки масла, а также подогрева масла при зимних условиях эксплуатации.

Рис. 5. Масляный пылеуловитель:

/ — люк; 2 — указатель уровня; 3 — козы­рек; 4 — подводящий патрубок;; 5 и 9 — . перегородки; 6 — контактные трубки; 7— (жалюзийные секции; '8 — выходной патру­бок; 10— дренажные трубки; 11 —- лодводящий патрубок чистого масла; 12 — дренажная трубка; / — промывочная секция; 11 — осадительная секция; 111 — отбойная секция.

Схема установки очистки масла от пыли представлена на рис. 6. Чистое масло подается насосом или пере­давливается газом. При передавливании масла газ ре­дуцируют и подают в емкость с давлением не выше 0,5 кгс/см2,


Рис. 6. Схема уста­новки очистки масла для пылеуловителей:

/ — аккумулятор масла; 2 — емкости чистого мас­ла; 3— насос; 4 — ем­кость грязного масла; 5— отстойники.

Таблица 11

Допустимые скорости газа в сепарационных узлах пылеуловителя с жалюзийной скрубберной секцией

Давление газа, кгс/см- Скорость газа, м/с Давление газа, кгс/см-

Скорость газа м/с

набегания на жалю­зи в свобод­ном сече­нии в контакт­ных труб­ках набегания на жалю­зи в свобод­ном сече­нии в контакт­ных труб­ках
10 0,628 1,12 3,35 50 20 0,445 0,79 2,35 60 30 0,365 0,66 1,95 70 40 0,314 0,56 1,68

.

0,282 0,50 1,50 0,257 0,46 1,38 0,238 0,43 1,27

Полную очистку пылеуловителя через люк проводят 2-3 раза в год.

Пропускную способность масляных пылеуловителей рассчитывают в зависимости от давления и допустимых скоростей в сепарационных узлах. Рекомендуемые ско­рости в пылеуловителях с жалюзийной скрубберной насадкой следует принимать по табл. 11.

Приведенным скоростям газа в пылеуловителях соответствует норма уноса солярового масла, равная 25 г. на 1000 м3 очищаемого газа.

Пропускная способность пылеуловителя определяется по формулам:

Qст=9,35.105*D2*p*(ρжг)/T*ρг; (3)

Qн=Qст*Tн/Tст , (4)

где Qст и Qн - пропускная способность пылеуловителям соответственно при 0° С и 760 мм рт. ст. и при 20° С и 760 мм рт. ст., м3/сут; D — внутренний диаметр пылеуловителя, м; р — рабочее давление в пылеуловителе, кгс/см2; Т — температура газа в пылеуловителе, К; ρж — плот­ность масла, кг/м3; ρг —плотность газа при рабочих условиях, кг/м3.