На рис. 3 показана принципиальная схема компоновки основного оборудования компрессорной станции, состоящей из 3 ГПА. В соответствии с этим рисунком в состав основного оборудования входит: 1 - узел подключения КС к магистральному газопроводу; 2 - камеры запуска и приема очистного устройства магистрального газопровода; 3 - установка очистки технологического газа, состоящая из пылеуловителей и фильтр-сепараторов; 4- установка охлаждения технологического газа; 5- газоперекачивающие агрегаты; 6 - технологические трубопроводы обвязки компрессорной станции; 7 - запорная арматура технологических трубопроводов обвязки агрегатов; 8 - установка подготовки пускового и топливного газа; 9 - установка подготовки импульсного газа; 10 - различное вспомогательное оборудование; 11 - энергетическое оборудование; 12 - главный щит управления и система телемеханики; 13 - оборудование электрохимической защиты трубопроводов обвязки КС.
Рис. 3. Принципиальная схема компоновки основного оборудования компрессорной станции
На магистральных газопроводах различают три основных типа КС: головные компрессорные станции, линейные компрессорные станции и дожимные компрессорные станции.
Головные компрессорные станции (ГКС) устанавливаются непосредственно по ходу газа после газового месторождения. По мере добычи газа происходит падение давления в месторождении до уровня,когда транспортировать его в необходимом количестве без компремирования уже нельзя. Поэтому для поддержания необходимого давления и расхода строятся головные компрессорные станции. Назначением ГКС является создание необходимого давления технологического газа для его дальнейшего транспорта по магистральным газопроводам. Принципиальным отличием ГКС от линейных станций является высокая степень сжатия на станции, обеспечиваемая последовательной работой нескольких ГПА с центробежными нагнетателями или поршневыми газомото-компрессорами. На ГКС предъявляются повышенные требования к качеству подготовки технологического газа.
Линейные компрессорные станции устанавливаются на магистральных газопроводах, как правило, через 100-150 км. Назначением КС является компремирование поступающего на станцию природного газа, с давления входа до давления выхода, обусловленных проектными данными. Тем самым обеспечивается постоянный заданный расход газа по магистральному газопроводу. В России строятся линейные газопроводы в основном на давление Рпр=5,5 МПа и Рпр=7,5 МПа.
Дожимные компрессорные станции (ДКС) устанавливаются на подземных хранилищах газа (ПХГ). Назначением ДКС является подача газа в подземное хранилище газа от магистрального газопровода и отбор природного газа из подземного хранилища (как правило, в зимний период времени) для последующей подачи его в магистральный газопровод или непосредственно потребителям газа. ДКС строятся также на газовом месторождении при падении пластового давления, ниже давления в магистральном трубопроводе. Отличительной особенностью ДКС от линейных КС является высокая степень сжатия 2-4, улучшенная подготовка технологического газа (осушители, сепараторы, пылеуловители), поступающего из подземного хранилища с целью его очистки от механических примесей и влаги, выносимой с газом.
Около потребителей газа строятся также газораспределительные станции (ГРС), где газ редуцируется до необходимого давления (Р=1,2;0,6; 0,3 МПа) перед подачей его в сети газового хозяйства.
В состав ГПЗ входят следующие основные узлы:
1) очистка газа от серосодержащих соединений и утилизация серосодержащих соединений;
2) осушка газа;
3) компримирование газа;
4) выделение фракций сжиженных углеводородных (нефтяных) газов и этана;
5) разделение фракций сжиженных нефтяных газов (газофракционирование);
6) получение гелия и других инертных газов.
Газоперерабатывающие заводы, работающие на попутных газах, могут быть скооперированы с установками стабилизации нефти. Газоперерабатывающие заводы, обслуживающие газоконденсатные месторождения, имеют в своем составе установки по переработке газового конденсата (очистка, стабилизация и разделение на фракции). На рис. 4 представлена структурная схема газоперерабатывающего завода (без стадий выделения этана и редких газов).
Рис. 4. Структурная схема газоперерабатывающего завода.
3.ПОДГОТОВКА ГАЗА К ТРАНСПОРТУ
3.1.ОЧИСТКА ГАЗА ОТ МЕХАНИЧЕСКИХ ПРИМЕСЕЙ
Система подготовки технологического газа служит для очистки газа от механических примесей и жидкости перед подачей его потребителю в соответствии с требованиями ГОСТ 5542-87.
При добыче и транспортировке в природном газе содержатся различного рода примеси: песок, сварной шлам, конденсат тяжелых углеводородов, вода, масло и т.д. Источником загрязнения природного газа является призабойная зона скважины, постепенно разрушающаяся и загрязняющая газ. Подготовка газа осуществляется на промыслах, от эффективности работы которых зависит и качество газа. Механические примеси попадают в газопровод как в процессе его строительства, так и при эксплуатации.
Наличие механических примесей и конденсата в газе приводит к преждевременному износу трубопровода, запорной арматуры, рабочих колес нагнетателей и, как следствие, снижению показателей надежности и экономичности работы компрессорных станций и в целом газопровода.
Все это приводит к необходимости устанавливать на КС различные системы очистки технологического газа. Первое время на КС для очистки газа широко использовали масляные пылеуловители, которые обеспечивали достаточно высокую степень очистки (до 97-98%)). Масляные пылеуловители работают по принципу мокрого улавливания разного рода смесей, находящихся в газе. Примеси, смоченные маслом, сепарируются из потока газа, само масло очищается, регенерируется и вновь направляется в масленый пылеуловитель. Масляные пылеуловители чаще выполнялись в виде вертикальных сосудов, принцип действия которых, хорошо иллюстрируется схемой рис. 5.
Очищаемый газ поступает в нижнюю секцию пылеуловителя, ударяется в отбойный козырек 8 и, соприкасаясь с поверхностью масла, меняет направление своего движения. При этом наиболее крупные частицы остаются в масле. С большой скоростью газ проходит по контактным трубкам 3 в осадительную секцию II, где скорость газа резко снижается и частицы пыли по дренажным трубкам стекают в нижнюю часть пылеуловителя I. Затем газ поступает в отбойную секцию III, где в сепараторном устройстве 1 происходит окончательная очистка газа.
Недостатками масляных пылеуловителей являются: наличие постоянного безвозвратного расхода масла, необходимость очистки масла, а также подогрева масла при зимних условиях эксплуатации.
Рис. 5. Масляный пылеуловитель:
/ — люк; 2 — указатель уровня; 3 — козырек; 4 — подводящий патрубок;; 5 и 9 — . перегородки; 6 — контактные трубки; 7— (жалюзийные секции; '8 — выходной патрубок; 10— дренажные трубки; 11 —- лодводящий патрубок чистого масла; 12 — дренажная трубка; / — промывочная секция; 11 — осадительная секция; 111 — отбойная секция.
Схема установки очистки масла от пыли представлена на рис. 6. Чистое масло подается насосом или передавливается газом. При передавливании масла газ редуцируют и подают в емкость с давлением не выше 0,5 кгс/см2,
Рис. 6. Схема установки очистки масла для пылеуловителей:
/ — аккумулятор масла; 2 — емкости чистого масла; 3— насос; 4 — емкость грязного масла; 5— отстойники.
Таблица 11
Допустимые скорости газа в сепарационных узлах пылеуловителя с жалюзийной скрубберной секцией
Давление газа, кгс/см- | Скорость газа, м/с | Давление газа, кгс/см- | Скорость газа м/с | ||||
набегания на жалюзи | в свободном сечении | в контактных трубках | набегания на жалюзи | в свободном сечении | в контактных трубках | ||
10 0,628 1,12 3,35 50 20 0,445 0,79 2,35 60 30 0,365 0,66 1,95 70 40 0,314 0,56 1,68 . | 0,282 0,50 1,50 0,257 0,46 1,38 0,238 0,43 1,27 |
Полную очистку пылеуловителя через люк проводят 2-3 раза в год.
Пропускную способность масляных пылеуловителей рассчитывают в зависимости от давления и допустимых скоростей в сепарационных узлах. Рекомендуемые скорости в пылеуловителях с жалюзийной скрубберной насадкой следует принимать по табл. 11.
Приведенным скоростям газа в пылеуловителях соответствует норма уноса солярового масла, равная 25 г. на 1000 м3 очищаемого газа.
Пропускная способность пылеуловителя определяется по формулам:
Qст=9,35.105*D2*p*(ρж-ρг)/T*ρг; (3)
Qн=Qст*Tн/Tст , (4)
где Qст и Qн - пропускная способность пылеуловителям соответственно при 0° С и 760 мм рт. ст. и при 20° С и 760 мм рт. ст., м3/сут; D — внутренний диаметр пылеуловителя, м; р — рабочее давление в пылеуловителе, кгс/см2; Т — температура газа в пылеуловителе, К; ρж — плотность масла, кг/м3; ρг —плотность газа при рабочих условиях, кг/м3.