Технические условия на товарные гликоли, выпускаемые отечественной промышленностью
Показатели | Этиленгликоль (ЭГ) марки | Диэтиленгликоль (ДЭГ) марки | ||||
А | Б | В | ДП | ДН | ДГ | |
Плотность при 20° С, г/см3 | 1,114—1,115 | 1,11—1,115 | Не ниже 1,11 | 1,116— 1,1163 | 1,115— 1,1163 | 1,115— 1,1163 |
Температура кипения при давлении 760 мм рт. ст., СС: начало, не ниже | 196 | 194 | 193 | 244 | 241 | 240 |
после отгона 90 мл дистиллята, не выше | -- | -- | -- | -- | 246,5 | 246,5 |
конец, не выше | 199 | 200 | 200 | 247,5 | 250 | 250 |
Объем отгона в указанных температурных пределах, не менее, мл | 95 | 96 | 90 | 98 | 96 | 96 |
Содержание, % масс: основного вещества, не менее, мл | 99,5 | 98 | 96 | 98,7 | 96,5 | 96,5 |
золы, не более влаги, не более | 0,01 | 0,03 | 0,03 | — | — | — |
0,3 | Не нормируется | Не нормируется | 0,1 | 0,4 | 0,4 | |
этиленгликоля, не более . . | — | — | — | 0,2 | 1,0 | — |
Число омыления, не более, мл КОН | — | — | — | 0,1 | 0,4 | 0,4 |
Цвет (номер шкалы цветности), не выше | 10 | Не нормируется | Не нормируется | 30 | -- | — |
Рис16 Принципиальная технологическая схема осушки газа жидким поглотителем.
Рис. 17 Зависимость точки росы осушенного газа от температуры контакта и концентрации растворов гликолей: а – ТЭГ, б- ДЭГ.
3.5. НИЗКОТЕМПЕРАТУРНАЯ СЕПАРАЦИЯ
Осушка и извлечение конденсата из газа, добываемого на газоконденсатных месторождениях, совмещаются в одном процессе — низкотемпературной сепарации (НТС). При охлаждении газа за счет дросселирования и применения установок искусственного холода или турбодетандеров одновременно выделяются углеводород и влага. Для борьбы с образующимися гидратами в поток сырого газа перед теплообменниками «газ—газ» впрыскивают метанол или гликоли. Точка росы газа по влаге определяется температурой и концентрацией гликоля на выходе из теплообменника. Схема линии промысловой установки НТС производительностью 4 млн. м3/сут с использованием установки искусственного холода представлена на рис. 18.
Рис.18 Технологическая схема установки НТС с искусственным холодом.
Газ при температуре 40° С и давлении 55 кгс/см2 поступает в трубное -пространство теплообменников, в которых охлаждается обратным потоком газа до температуры —5° С. В результате изобарического охлаждения прямого потока тяжелые углеводороды отделяются от газа в сепараторах С-1 и С-2. В сепараторе первой ступени С-1 отделяются конденсат и влага, выделившиеся из газа от пласта до сепаратора. В сепараторе второй ступени С-2 отделяется смесь конденсат — гликоль. Далее газ поступает в трубное пространство испарителя, в котором в результате теплообмена между кипящим хладагентом и газом последний охлаждается до температуры 12° С. Выделившаяся жидкость отводится из сепаратора С-3 на разделение, а очищенный и осушенный холодный газ, после теплообменников нагретый до температуры 30—35° С, с давлением 53—54 кгс/см2 поступает в магистральный газопровод.
3.6. СИСТЕМЫ ОХЛАЖДЕНИЯ ТРАНСПОРТИРУЕМОГО ГАЗА НА КОМПРЕССОРНЫХ СТАНЦИЯХ
Компремирование газа на КС приводит к повышению его температуры на выходе станции. Численное значение этой температуры определяется ее начальным значением на входе КС и степенью сжатия газа.
Излишне высокая температура газа на выходе станции, с одной стороны, может привести к разрушению изоляционного покрытия трубопровода, а с другой стороны - к снижению подачи технологического газа и увеличению энергозатрат на его компремирование (из-за увеличения его объемного расхода).
Определенные специфические требования к охлаждению газа предъявляются в северных районах страны, где газопроводы проходят в зоне вечномерзлых грунтов. В этих районах газ в целом ряде случаев необходимо охлаждать до отрицательных температур с целью недопущения протаивания грунтов вокруг трубопровода. В противном случае это может привести к вспучиванию грунтов, смещению трубопровода и, как следствие, возникновению аварийной ситуации.
Охлаждение технологического газа можно осуществить в холодильниках различных систем и конструкций; кожухотрубных (типа «труба в трубе»), воздушных компрессионных и абсорбирующих холодильных машинах, различного типа градирнях, воздушных холодильниках и т.д.
Наибольшее распространение на КС получили схемы с использованием аппаратов воздушного охлаждения АВО (рис.19). Следует однако отметить, что глубина охлаждения технологического газа здесь ограничена температурой наружного воздуха, что особенно сказывается в летний период эксплуатации. Естественно, что температура газа после охлаждения в АВО не может быть ниже температуры наружного воздуха.
Взаимное расположение теплообменных секций и вентиляторов для прокачки воздуха практически и определяет конструктивное оформление АВО. Теплообменные секции АВО могут располагаться горизонтально, вертикально, наклонно, зигзагообразно, что и определяет компоновку аппарата.
Рис.19. План-схема обвязки аппаратов воздушного охлаждения газа:
1 - аппарат воздушного охлаждения газа; 2,4,6,7 - коллекторы; 3 - компенсаторы; 5 - свечи; 8 - обводная линия.
Рис. 20. Схема подключения аппарата воздушного охлаждения (при нижнем расположении вентилятора):
1 - воздушный холодильник газа 2АВГ-75; 2 - свеча; 3,4 - коллекторы входа и выходы газа
Рис. 21. Аппарат воздушного охлаждения газа с верхним расположением
вентилятора: 1 - теплообменная поверхность; 2 - вентилятор; 3 - патрубок; 4 - диффузор; 5 - клиноременная передача; 6 - электродвигатель
АВО работает следующим образом: на опорных металлоконструкциях закреплены трубчатые теплообменные секции (рис. 20 - 21). По трубам теплообменной секции пропускают транспортируемый газ, а через межтрубное пространство теплообменной секции с помощью вентиляторов, проводимых во вращение от электромоторов, прокачивают на
ружный воздух. За счет теплообмена между нагретым при компремирова-нии газом, движущимся в трубах и наружным воздухом, движущимся по межтрубному пространству, и происходит охлаждение технологического газа на КС.