Смекни!
smekni.com

Подготовка газа к транспортировке 2 (стр. 9 из 12)

Опыт эксплуатации АВО га КС показывает, что снижение температуры газа в этих аппаратах можно осуществить примерно на значение порядка 15 - 25 °С. Одновременно опыт эксплуатации указывает на необходимость и экономическую целесообразность наиболее полного использования устано­вок охлаждения газа на КС в годовом цикле эксплуатации, за исключением тех месяцев года с весьма низкими температурами наружного воздуха, когда включение всех аппаратов на предыдущей КС приводит к охлаждению транс­портируемого газа до температуры, которая может привести к выпадению гидратов. Обычно это относится к зимнему времени года.

При проектировании компрессорной станции количество аппаратов воздушного охлаждения выбирается в соответствии с отраслевыми нор­мами ОНТП51-1-85. На основании этих норм температура технологи­ческого газа на выходе из АВО должна быть не выше 15 -20 °С средней температуры наружного воздуха.

Уменьшение температуры технологического газа, поступающего в газопровод после его охлаждения в АВО, приводит к уменьшению сред­ней температуры газа на линейном участке трубопровода и, как след­ствие, к снижению температуры и увеличению давления газа на входе в последующую КС. Это, в свою очередь, приводит к уменьшению степе­ни сжатия на последующей станции (при сохранении давления на выхо­де из нее) и энергозатрат на компремирование газа по станции.

Очевидно также, что оптимизация режимов работы АВО должна со­ответствовать условию минимальных суммарных энергозатрат на ох­лаждение и компремирование газа на рассматриваемом участке работы газопровода.

Следует также отметить, что аппараты воздушного охлаждения газа являются экологически чистыми устройствами для охлаждения газа, не требуют расхода воды, относительно просты в эксплуатации. В эксплуа­тации применяются следующие типы АВО газа: 2АВГ-75, АВЗД, фирм «Нуово Пиньоне» и «Крезо Луар».

В настоящее время установки охлаждения транспортируемого газа являются одним из основных видов технологического оборудования КС.

4. Газоперекачивающие агрегаты.

4.1. Компоновка газоперекачивающих агрегатов на станции

Газоперекачивающий агрегат - сложная энергетическая установка, предназначенная для компремирования природного газа, поступающе­го на КС по магистральному газопроводу.

На рис. 22 приведена принципиальная схема ГПА с газотурбин­ным приводом, где показаны все основные узлы, входящие в агрегат:

1. Воздухозаборная камера (ВЗК) нужна для подготовки циклового воздуха, поступающего из атмосферы на вход осевого компрессора. На разных типах ГПА воздухозаборные камеры имеют различные конструкции, но все предназначены для очистки поступающего воз­духа и понижения уровня шума в районе ВЗК.

2. Пусковое устройство (турбодетандер, воздушный или электричес­кий стартер) необходимо для первоначального раскручивания осе­вого компрессора (ОК) и турбины высокого давления (ТВД) в мо­мент пуска ГПА.

3. Осевой компрессор предназначен для подачи необходимого количества воздуха в камеру сгорания газотурбинной установки.

4. Турбина высокого давления служит приводом осевого компрессора

и находится с ним на одном валу.

5. Турбина низкого давления (ТНД) служит для привода центробежно­го нагнетателя.

6. Нагнетатель природного газа представляет собой центробежный газовый компрессор без наличия промежуточного охлаждения и пред­назначен для компремирования природного газа.

7. Краны обвязки ГПА.

8. Регенератор (воздухоподогреватель) представляет собой теплообменный аппарат для повышения температуры воздуха, поступающе­го после ОК в камеру сгорания (КС), и тем самым снижения расхода топливного газа по агрегату.

9. Камера сгорания предназначена для сжигания топливного газа в потоке воздуха и получения продуктов сгорания с расчетными пара­метрами (давление, температура) на входе в ТВД.

10.Блок подготовки пускового и топливного газа представляет собой комплекс устройств, при помощи которых часть газа, отбираемого из магистрального газопровода, очищается от механических приме­сей и влаги, доводится до необходимых параметров, обусловленных требованиями эксплуатации газоперекачивающих агрегатов.

11.Аппараты воздушного охлаждения масла предназначены для ох­лаждения смазочного масла после подшипников турбин и нагнета­теля.

Кроме того, каждый ГПА снабжен системой регулирования основ­ных параметров агрегата, системами агрегатной автоматики, автоматического пожаротушения, обнаружения загазованности помещения.


Рис. 22 Принципиальная схема компоновки ГПА.

4.2. Типы газоперекачивающих агрегатов, применяемых на КС

Газоперекачивающие агрегаты, применяемые для компремирования газа на компрессорных станциях, по типу привода подразделяются на три основных группы: газотурбинные установки (ГТУ), электропривод­ные агрегаты (ЭГПА) и газомотокомпрессорные установки (ГМК).

К первой группе относятся ГПА с приводом от центробежного нагне­тателя от газовой турбины; ко второй - агрегаты с приводом от элект­родвигателя и к третьей группе - агрегаты с приводом от поршневых двигателей внутреннего сгорания, использующих в качестве топлива природный газ.

К агрегатам первой группы - основного вида привода компрессор­ных станций, относятся: стационарные, авиационные и судовые газо­турбинные установки.

К стационарным газотурбинным установкам, специально сконструированных для использования на газопроводах страны.

4.3. Нагнетатели природного газа. Их характеристики.

Нагнетателями природных газов принято называть лопаточные ком­прессорные машины с соотношением давления сжатия свыше 1,1 и не имеющие специальных устройств для охлаждения газа в процессе его сжатия.

Все нагнетатели условно можно разделить на два класса: неполнонапорные (одноступенчатые) (см. рис. 23.) и полнонапорные (см. рис.24). Первые, имеющие степень сжатия в одном нагнетате­ле 1,25-1,27, используются при последовательной схеме компремирования газа на КС, вторые - полнонапорные, имеющие степень сжатия 1,45-1,51, используются при коллекторной схеме обвязки ком­прессорной станции.

Важной характеристикой нагнетателя является его производи­тельность. Применительно к газопроводу различают объемную Q, м3/мин, массовую G, кг/ч, и коммерческую подачу газа Qк, млн*нм3/сут. Перевод одних величин в другие осуществляется и использованием уравнения Клапейрона с поправкой на сжимаемость газа z, Рv = zRT. При использовании G кг газа применяется урав­нение Клапейрона — Менделеева также с использованием поправки на сжимаемость газа z, РQ =GzRТ, где Q - объемная подача газа, G - массовая подача, характеризующая количество газа, протекаю­щее в единицу времени через сечение всасывающего патрубка. Ком­мерческая подача Qк определяется по параметрам состояния во всасывающем патрубке, приведенным к нормальным физическим ус­ловиям ( t = 20°С; Р = 0,101 МПа). Для определения коммерческой подачи используется уравнение Клапейрона для «стандартных» условий: Р0v0 = RТ0, Qк=G/ρ0, ρ 00/RТ0.

Характеристики ряда типов центробежных нагнетателей, исполь­зуемых на газопроводах, приведены в табл. 15. Каждый тип нагнетателя характеризуется своей характеристи­кой, которая строится при его натурных испытаниях. Под характе­ристикой нагнетателей принято понимать зависимость степени сжа­тия ε, политропического КПД (η пол) и удельной приведенной мощно­сти (N. I р )п от приведенного объемного расхода газа Qпр, . Строятся такие характеристики для заданного значения газовой постоянной Rпр, коэффициента сжимаемости zпр, показателя адиабаты, приня­той расчетной температуры газа на входе в нагнетатель Твв приня­том диапазоне изменения приведенной относительной частоты вра­щения (п/п0)пр. Типовая характеристика нагнетателя типа 370-18-1 приведена на рис. 25 Характеристики других типов имеют такой же вид, как для неполнонапорных, так и для полнонапорных нагне­тателей.


Рис. 23. Неполнонапорный одноступенчатый нагнетатель 370-18 агрегатаГТК-10-4 производства НЗЛ: 1 - корпус; 2 - крышка; 3 - лопаточный диффузор;4 - рабочее колесо; 5 - гильза; 6 - зубчатая муфта; 7 - клиновые прокладки;

8 - анкерные болты.


Рис. 24 Полнонапорный двухступенчатый нагнетатель НЦ-16/76 агрегата ГПА У16 производства АО «СМПО им. Фрунзе»: 1-опорный подшипник;2 - крышка; 3 - корпус; 4 - внутренний корпус; 5 - ротор; 6 - крышка;7 - уплотнение; 8 - опорно-упорный подшипник; 9 - блок масляных насосов;10 - думмис; 11 - улитка; 12 - обратный направляющий аппарат.


Рис. 25. Приведённые характеристики нагнетателя 370-18-1 при [Ти]пр=288К; zпр=0,9; Rмр=490 Дж / (кг -К)

Таблица 15

Характеристики центробежных нагнетателей для транспорта природных газов