Смекни!
smekni.com

Анализ эффективности проведения гидравлического разрыва пласта на Ельниковском месторождении (стр. 9 из 25)

За период 1988-1995гг. в Западной Сибири проведено более 1600 опера­ций ГРП. Общее число объектов разработ­ки, охваченных ГРП, превысило 70. Для целого ряда объектов ГРП стал неотъемлемой частью разработки. Благо­даря ГРП по многим объектам удалось добиться рентабельного уровня деби­тов скважин по нефти. В настоящее время объем проведения ГРП в Западной Сибири достиг уровня 500 скважино-операции в год. За эти годы накоплен определенный опыт в проведении и оценке эффективности ГРП в различных геолого-физических условиях.

Большой опыт гидроразрыва пластов накоплен в АО "Юганскнефтегаз". Анализ эффективности более 700 ГРП, про­веденных СП "ЮГАНСКФРАК­МАСТЕР" в 1989-1994 гг. на 22 пластах 17 месторождений АО "Юганскнеф­тегаз", показал следующее.

Основными объектами применения ГРП являлись залежи с низкопрони­цаемыми коллекторами. В первую очередь ГРП проводили на малоэффек­тивном фонде скважин: на бездействующих скважинах - 24 % от общего объ­ема работ, на малодебитных скважинах с дебитом жидкости менее 5 т/сут - 38 % и менее 10 т/сут - 75 %. На безводный и ма­ловодный (менее 5 %) фонд скважин приходится 76 % всех ГРП. В среднем за период обобщения по всем обработкам в резуль­тате ГРП дебит жидкости был увеличен с 8,3 до 31,4 т/сут, а по нефти - с 7,2 до 25,3 т/сут, т.е. в 3,5 раза при росте обводнен­ности на 6,2 %. В результате дополнительная добыча нефти за счет ГРП составила за 5 лет около 6 млн т. Наиболее удачные результаты получены при проведе­нии ГРП в чисто нефтяных объектах с большой нефтенасыщенной толщиной, где дебит жидкости увеличился с 3,5...6,7 до 34 т/сут при росте обводнен­но­сти всего на 5...6 %.

В 1993г. начались опытно-промышленные работы по проведению ГРП на месторождениях ОАО "Ноябрьскнефте­газ", в течение года было про­ведено 36 операций. Общий объем производства ГРП к концу 1997г. соста­вил 436 операций. Гид­роразрыв проводился как правило в малодебитных скважинах с низкой обводненностью, расположенных на участках с ухуд­шенными фильтрационно-емкостными свойствами. После ГРП дебит нефти увеличился в среднем в 7,7 раза, жидкости - в 10 раз. В результате ГРП в 70,4 % случаев обводненность возросла в среднем от 2 % до ГРП до 25 % после обработки. До­полнительная добыча нефти, от производства ГРП в ОАО "Но­ябрьскнефтегаз" к концу 1997г. превысила 1 млн. т.

Общепринятый подход к оценке эффективности гидроразрыва состоит в анализе динамики добычи нефти только обработан­ных скважин. При этом за базовые принимаются дебиты до ГРП, а дополнительная добыча рассчитыва­ется как разница между фактической и базовой добычей по данной скважине. При принятии решения о проведении ГРП в скважине часто не рассматрива­ется эффективность этого мероприятия с учетом всей пластовой системы и расстановки добывающих и нагнета­тельных скважин. Видимо, с этим свя­заны негативные послед­ствия применения ГРП, отмечаемые некоторыми авторами. Так, например, применение этого метода на отдельных участках Мамонтовского месторождения вызвало снижение нефтеотдачи из-за более интенсивного роста обвод­ненности некоторых обработанных и особенно ок­ружающих скважин. Анализ технологии проведения гидроразрыва на мес­то­рождениях ОАО "Сургутнефтегаз" показал, что зачастую неудачи связаны с нерациональным выбором параметров обра­ботки, когда темп закачки и объ­емы технологических жид­костей и проппанта определяются без учета таких факторов, как оптимальная длина и ширина закрепленной трещины, рас­счи­танные для данных условий; давление разрыва глинистых экранов, отде­ляющих продуктивный пласт от выше- и нижеле­жащих газо- и водонасы­щенных пластов. В результате умень­шаются потенциальные возможности ГРП как средства увели­чения добычи, увеличивается обводненность добы­ваемой про­дукции.

При промышленной реали­зации ГРП предварительно необходимо составле­ние проектно­го документа, в котором была бы обоснована технология ГРП, увязанная с системой разработки залежи в целом. При проведе­нии ГРП необ­ходимо предусмотреть комплекс промысловых исследований на первооче­редных скважинах для определения местоположения, направления и прово­димости трещины, что позволит внести корректировку в технологию ГРП с учетом особенностей каждого конкретного объекта. /6/.

2.5. Проектирование гидравлического разрыва пласта

2.5.1. Подбор скважин для осуществления программы по проведению гидравлического разрыва пласта на Ельниковском месторождении

Подбор кандидатов является, вероятно, наиболее критичным этапом всего проекта ГРП. Успех ГРП в очень большой степени зависит от подбора скважины. Например, эффект от ГРП истощенного коллектора может ока­заться весьма краткосрочным и неутешительным. Наоборот, такой ГРП на скважине с сильно поврежденной призабойной зоной, в коллекторе с боль­шими запасами может привести к значительному и устойчивому приросту добычи.

Параметры для оценки скважин-кандидатов для ГРП: для корректной оценки скважины-кандидата ГРП требуется минималь­ный объем данных. Ниже приведен перечень параметров и данных, необхо­димых для проведения такую оценку.

1. Карта месторождения с указанием:

1) расположения скважины-кандидата;

2) расположения соседних скважин, включая нагнетательные;

3) расположения скважин с выполненными ГРП;

4) легендой, дающей возможность рассчитать расстояния до соседних скважин.

2. Данные по добыче прошлых лет:

1) графики работы скважины по нефти, воде и газу, динамика давления на устье, данные по всем внутрискважинным работам;

2) текущий режим эксплуатации;

3) сведения по скважинам после ГРП в районе работ, в т.ч. данные ГИС.

3. Данные (диаграммы) ГИС в открытом стволе:

1) ГК, ПС, пористость, сопротивление и/или данные акустического каро­тажа;

2) содержать сведения об интервале как минимум на 50м выше и 50м ниже интересуемой зоны;

3) на диаграммах должны быть показаны зоны ПВР (в прошлом, настоя­щие и планируемые в будущем);

4) текущий и планируемый искусственный забой;

5) должна быть показана кровля всех зон.

4. Данные по целевому интересуемому и соседним пластам:

1) пластовое давление;

2) пластовая температура;

3) пористость;

4) литология;

5) местонахождение разломов;

6) естественная трещиноватость коллектора.

5. Данные по фильтрационным свойствам пласта, полученные при бурении:

1) модуль Юнга;

2) данные, свидетельствующие о том, будут ли прилегающие зоны яв­ляться барьером на пути развития трещины в высоту, или нет;

3) проектные кровля и подошва трещины;

4) требуется изоляция перфорационных отверстий для обеспечения разви­тия трещины в целевой зоне?;

5) представляет ли проблему близкорасположенный водоносный гори­зонт?

6. Представляет ли проблему вынос проппанта?

7. АКЦ с данными по 50м выше и ниже целевого интервала.

8. Схемы конструкции скважин с указанием расположения интервалов пер­форации, высоты подъема цемента, интервалов посадки и диаметров, це­ментных мостов-пробок, мест выполнения ловильных работ.

9. Сведения по обсадным и НКТ колоннам:

1) диаметры, марки стали, интервалы спуска;

2) наличие хвостовика в скважине?;

3) диаметр планируемой колонны ГРП?;

4) выдержит ли колонна ГРП преждевременный «Стоп»?;

5) выдержит ли затруб ожидаемые давления?;

6) достаточно ли качество цементирования над предполагаемой высо­той трещины?;

7) достаточно ли сцепление цементного камня (качество и количество) чтобы избежать смятия обсадной колонны над пакером?;

8) можно ли выполнить исследование с применением тетраборнокис­лого натрия или импульсный нейтронный каротаж для выявления воды в каналах цементного камня?

10. Данные о перфорации:

1) тип перфоратора;

2) плотность перфорации (отв. на м);

3) диаметр и глубина отверстий (мм);

4) фазирование (град);

5) отношение диаметра к макс. размеру частиц проппанта (меш).

11. Искривление ствола:

1) глубина максимальной кривизны ствола;

2) отклонение от вертикале на кровле интервала перфорации.

12. Полные данные по эксплуатации скважины.

13. Наземные сооружения.

14. Поддержка проекта со стороны ППД:

1) в состоянии ли нагнетательные скважины обеспечить повышенные объ­емы нагнетания в связи с возросшим отбором нефти?;

2) требуется карта (схема) заводнения.

При выполнении ГРП колонна подвергается экстремальным нагрузкам: Аномальные давления. При выполнении ГРП давление на устье может пре­вышать 680 атм. Очень важно, чтобы ФА была пригодна для работы с такими давлениями

Абразивные составы. Важно защитить ФА от чрезмерной эрозии.

Высокие нагрузки на НКТ и пакер

Высокие нагрузки на обсадную колонну. Обсадная колонна должна выдержи­вать давления в затрубе, необходимые для выравнивания давлений ГРП в ко­лонне ГРП.

Высокие нагрузки на хвостовик. Хвостовики должны выдерживать высокие забойные давления ГРП.

Жидкости – всегда следует проверять жидкости до начала КРС: качество, плотность, процент содержания соли, кальция и магния в воде, общее содер­жание взвешенных частиц и рН. В качестве основных жидкостей рекоменду­ется отфильтрованная до 10 микрон вода с 3% содержанием хлористого ка­лия. «Чистую» нефть необходимо проверить на содержание воды и частиц песка. Для глушения скважин и КРС должна применяться только нефть с со­держанием частиц песка < 0.003%. Все емкости для хранения нефти должны быть очищены паром. Для транспортировки разрешается использование только очищенных емкостей. Перед применением все жидкости подлежат обязательной проверке.