Смекни!
smekni.com

Минимизация холостых пробегов автотранспортного предприятия (стр. 3 из 5)

……………………….. ………………………….. …………………………

U5= A5Б1 – V1 = 9-5= 4; V3 = A5Б3 – U5 = 13-4= 9; U4= A4Б3 – V3 = 15-9 =6;

После расчёта индексов проверяем незанятые клетки на потенциальность.

п.4.2.3. Определение потенциальных клеток. Незанятые клетки, для которых получилось, что Ui + Vj >lij– называются потенциальными. Проверяем незанятые клетки на потенциальность. Проверка сводится к сравнению расстояний каждой незанятой клетки с суммой соответствующих ей индексов.

А1Б2 = u1 + v2 = 0-3 = -3 < ( l1-2=1);

А1Б3 = u1 + v3 = 0+9 = 9 > ( l­1-3­=7) -- 2 ;

....................................................................;

А2Б8 = u2 + v8 = 16+15= 31> ( l2-8=3)-- 28 ;

.....................................................................;

А6Б8 = u6 + v8 = 11+15= 26> ( l6-8=2)-- 24 .

По данным вычислений построим таблицу 7.

4.1.5. Оптимизация плана. Проверка допустимого плана на оптимальность заключается в соблюдении условий: {8} и {9}. Если данные условия не соблюдаются для клеток Xij =0, то значение потенциала отрицательно, что и определяет потенциальную клетку. Следует скорректировать допустимый план. Корректировка плана состоит в перемещении в потенциальную клетку с наименьшим по модулю потенциалом какую-нибудь загрузку. Перемещение производится при условии сохранения количества “+” и “-“ по строке и столбцу. Производя перемещение, следует повторить процесс определения потенциала до тех пор, пока условия {8} и {9} не будут соблюдены. Признаком оптимальности является отсутствие клеток, в которых сумма индексов будет больше расстояний.

Из наличия потенциальных клеток можно сделать вывод, что составленный план не является оптимальным. Выявленные клетки являются резервом улучшения плана, а превышение суммы индексов над расстоянием – потенциалом (в таблице 7 они размещены в нижнем правом углу клетки и выделены другим цветом). Улучшение неоптимального плана сводится к перемещению загрузки в потенциальную клетку матрицы.

Цепочку возможных перемещений определяют: для потенциальной клетки с наибольшим значением потенциала строят замкнутую цепочку из горизонтальных и вертикальных отрезков так, чтобы одна из её вершин находилась в данной клетке, а все остальные вершины в занятых клетках. Знаком “+” отмечают в цепочке её нечётные вершины, считая вершину в клетке с наибольшим потенциалом, а знаком “-“ – чётные вершины. Наименьшая загрузка в вершинах 18 ездок, уменьшая загрузку в вершинах со знаком “-“ и увеличивая её в вершинах со знаком “+” получают улучшенный план. Дальнейшие расчёты по его оптимизации производятся аналогично. Признаком оптимальности является отсутствие клеток, в которых сумма индексов будет больше расстояний.

В результате всех вычислений имеем конечный оптимальный план возврата порожняка в таблице 8.

ТАБЛИЦА 8. Оптимальный план возврата порожняка.

Пункт назначения (образов. порожняка)
Пункт назначения

Вспом.

Индек.

Б1 Б2 Б3 Б4 Б5 Б6 Б7 Б8 Потребность в перевозках
Ui / Vi 5 -1 7 6 3 -3 6 3
А1 0 665 1 127 8 4 2 14 15 78
А2 0 05 13 8 6 3 1 7 183 18
А3 5 12 184 14 13 11 4 12 10 18
А4 8 16 07 815 15 13 125 15 12 20
А5 -2 9 1 13 6 301 1 64 01 36
А6 -3 3 1 5 123 8 10 123 2 24
Наличие порожняка

66

18 20 12 30 12 18 18 194/194

После составления оптимального плана возврата порожняка произведём проверку клеток на потенциальность. Проверка сводится к сравнению расстояний каждой незанятой клетки с суммой соответствующих ей индексов.

А1Б2 = u1 + v2 = 0-1 = -1 < ( l1-2=1); ……; А2Б2 = u2 + v2 = 0-1 = -1 < ( l2-2=13);

А1Б4 = u1 + v4 = 0+6 = 6 < ( l­1-4­=8); ……; А2Б7 = u2 + v7 = 0+6 = 6 < ( l2-7=7);

.........................................................; ……; .…………………………………;

А3Б8 = u3 + v8 = 5+3 = 8 < ( l3-8=10); …..; А4Б8 = u4 + v8 = 8+3 = 11 < ( l4-8=12);

.........................................................; ….…; .…………………………………..;

А6Б1 = u6 + v1 = -3+5 = 2 ‡( l6-8=2); ……; А6Б8 = u6 + v8 = -3+3 = 0 < ( l6-8=2).

п.4.3. Составление матрицы совмещённых планов. Матрица совмещённых планов составляется после окончания разработки оптимального плана возврата порожняка. В таблицу 9 подставляются груженые ездки из таблицы 5. С целью лучшей наглядности изображения данные выполняются разными цветами.

ТАБЛИЦА 9. Матрица совмещенных планов.

Пункт назначения Б1 Б2 Б3 Б4 Б5 Б6 Б7 Б8
А1 66 425 1 12 7 8 4 2 18 14 18 15
А2 0 5 1813 8 6 3 1 7 183
А3 12 184 14 13 1811 4 12 10
А4 16 07 8815 12 15 13 125 15 12
А5 24 9 1 12 13 6 301 1 64 01
А6 3 1 5 123 12 8 12 10 123 2

Вспомогательные и итоговые столбцы из матрицы удаляются, т.к. они не требуются для дальнейших расчётов.

Следующим этапом идёт расчёт маятниковых и кольцевых маршрутов. Маятниковые маршруты определяются в таблице 9 клетками с двойной загрузкой и рассчитываются по наименьшей загрузке. Таких клеток в матрице две: маршрут 1: А111 на 42 оборота и маршрут 2: А444 на 8 оборотов. После их образования происходит расчёт кольцевых маршрутов.

Кольцевой маршрут из двух звеньев ( две гружёные и две холостые ездки ) составляется путём образования прямоугольника из горизонтальных и вертикальных отрезков таким образом, что его чётные вершины должны лежать в клетках с порожними ездками, а нечётные вершины в клетках с гружёными клетками. Количество оборотов на маршруте определяется наименьшей из загрузок в клетке. В таблице 10 изображёны прямоугольники, обозначающие кольцевые маршруты.

ТАБЛИЦА 10. Таблица образования двухзвенных кольцевых маршрутов.

Пункт назначения Б1 Б2 Б3 Б4 Б5 Б6 Б7 Б8
А1
24 5 1 12 7 8 4 2 18 14 18 15
А2 5 1813 8 6 3 1 7 183
А3 12 184 14 13 1811 4 12 10
А4
16 7 15 12 15 13 12 5 15 12
А5 24 9 1 12 13 6 30 1 1 6 4 1
А6 3 1 5 12 3 12 8 12 10 12 3 2

Маршрут 3: А17511 на 6 оборотов (наименьшему значению загрузки) и маршрут 4: А46644 на 12 оборотов. Не шедшие на образование маршрута грузовые и порожние ездки исключаются.