Смекни!
smekni.com

Отрывок из учебника по теории систем и системному анализу (стр. 11 из 16)

Оценивая классификации с точки зрения их использования при выборе методов моделирования систем, следует отметить, что такие рекомендации (вплоть до выбора математических методов) имеются в них только для классов относительно низкой сложности (в клас­сификации К.Боулдинга, например, - для уровня неживых систем),

47



46


Глава 1


Основы системного анализа


47



щих уровней, когда аналоговая модель отображает несколько (или только одну) сторон функционирования объекта. Макети­рование применяется, когда протекающие в реальном объекте процессы не поддаются физическому моделированию или могут предшествовать проведению других видов моделирования. В ос­нове построения мысленных макетов также лежат аналогии, обыч­но базирующиеся на причинно-следственных связях между явле­ниями и процессами в объекте.

Символическое моделирование представляет собой искусствен­ный процесс создания логического объекта, который замещает реальный и выражает его основные свойства с помощью опреде­ленной системы знаков и символов. В основе языкового модели­рования лежит некоторый тезаурус, который образуется из на­бора понятий исследуемой предметной области, причем этот на­бор должен быть фиксированным. Под тезаурусом понимается словарь, отражающий связи между словами или иными элемен­тами данного языка, предназначенный для поиска слов по их смыслу.

Традиционный тезаурус состоит из двух частей: списка слов и устойчивых словосочетаний, сгруппированных по смысловым (те­матическим) рубрикам; алфавитного словаря ключевых слов, за­дающих классы условной эквивалентности, указателя отношений между ключевыми словами, где для каждого слова указаны соот­ветствующие рубрики. Такое построение позволяет определить семантические (смысловые) отношения иерархического (род/вид) и неиерархического (синонимия, антонимия, ассоциации) типа.

Формально тезаурусом называют конечное непустое множе­ство Vслов v, отвечающее следующим условиям:

1) имеется непустое подмножество У0с V, называемое мно­
жеством дескрипторов;

2) имеется симметричное, транзитивное, рефлексивное отно­
шение Rс FxV, такое, что:

б) V] е V \ vq=> (3vе V0)(vRVl)

при этом отношение Rназывается синонимическим, а слова v,, v2, отвечающие этому отношению, называются синонимическими дескрипторами;


3) имеется транзитивное и несимметричное отношение К с: vqx.vq, называемое обобщающим отношением.

В случае если два дескриптора v( и v2 удовлетворяют отноше­нию v, К v2, то полагают, что дескриптор v, более общий, чем дескриптор v2.

Элементы множества У\У0называются множеством аскрип-торов.

Между тезаурусом и обычным словарем имеются принципи­альные различия. Тезаурус - словарь, который очищен от нео­днозначности, т.е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному сло­ву может соответствовать несколько понятий.

Если ввести условное обозначение отдельных понятий, т.е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью зна­ков отображать набор понятий - составлять отдельные цепочки из слов и предложений. Используя операции объединения, пере­сечения и дополнения теории множеств, можно в отдельных сим­волах дать описание какого-то реального объекта.

Математическое моделирование - это процесс установления соответствия данному реальному объекту некоторого математи­ческого объекта, называемого математической моделью. В прин­ципе, для исследования характеристик любой системы матема­тическими методами, включая и машинные, должна быть обяза­тельно проведена формализация этого процесса, т.е. построена математическая модель. Вид математической модели зависит как от природы реального объекта, так и от задач исследования объекта, от требуемой достоверности и точности решения зада­чи. Любая математическая модель, как и всякая другая, описыва­ет реальный объект с некоторой степенью приближения.

Для представления математических моделей могут исполь­зоваться различные формы записи. Основными являются инва­риантная, аналитическая, алгоритмическая и схемная (графи­ческая).

Инвариантная форма - запись соотношений модели с помо­щью традиционного математического языка безотносительно к методу решения уравнений модели. В этом случае модель может быть представлена как совокупность входов, выходов, перемен­ных состояния и глобальных уравнений системы в виде (1.3).


а для более сложных систем оговаривается, что дать такие реко­мендации трудно.

Поэтому ниже подробнее рассматривается классификация, в ко­торой делается попытка связать выбор методов моделирования со всеми классами систем Основанием для этой классификации яв­ляется степень организованности

Таблица 1.1

Тик системы УроисНЬ СЛОЖ)'«>СТН Примеры
L.™ ------------------ ---- ----------- . ----------------------- —1 Статические структуры (остовы) Кристаллы
Неживые си- Простые динамические структуры с задан- Часовой мсха-
стемы ным законом поведения шгзм
Кибернетические системы с уираачяемымн Термостат
: циклами обратной связи
1 ---- Открытые системы с самосохранясмой Клетки,
структурой (первая ступень, на которой гомеостат
возможно разделение на живое и неживое)
Живые организмы с низкой способностью Растения
воспринимать информацию
Живые организмы с белое развитой способ- Животные
Живые ностью воспринимать информацию, но не
системы обладающие самосознанием ,
Системы, характеризующиеся самосознани- Люди V
ем, мышлением и нетривиальным поведением t
Социальные системы Социальные 1
организации &
Трансцендентные системы или системы, ле- »ь -•С
жащие в настоящий момент вне нашего по- , if
знания

4f

Jrt

1 ^ .1 Jf"

систем по степени организованности к ее роль в выборе методов моделирования систем. Впервые разделение систем по степени организованности по аналогии с классификацией Г.Сай­мона и А.Ньюэлла (хорошо структризованные, плохо структуризо-ванные и неструктуризованные проблемы [1.37]) было предложено В.В.Налимовым, который выделил класс хорошо организованных я класс плохо организованных или диффузных систем [1.34].

Позднее к этим двум классам был добавлен еще класс самоорга­низующихся систем [1.49], который включает рассматриваемые ино­гда в литературе раздельно классы саморегулирующихся, самообу­чающихся, самонастраивающихся и т.п. систем.

Выделенные классы практически можно рассматривать как под­ходы к отображению объекта или решаемой задачи, которые могут выбираться в зависимости от стадии познания объекта и возмож­ности получения информации о нем. 48


Кратко охарактеризуем эти классы.

I. Представление объекта или процесса принятия решения в виде хорошо организованной системы возможно в тех слу­чаях, когда исследователю удается определить все элементы си­стемы и их взаимосвязи между собой и с целями системы в биде детерминированных (аналитических, графических) зависимостей.

На представлении этим классом систем основаны большинство моделей физических процессов и технических систем. Однако для сложных объектов формирование таких моделей существенно зави­сит от лица, принимающего решения.

Например, работу сложного механизма приходится отображать в виде упрощен-• •,>й схемы или системы уравнений, учитывающих не все, но наиболее сущсствсшшс очки зрения автора модели и назначения механизма (цели его создания), элементы : связи между ними. Атом может быть представлен в виде планетарной модели, ;о^ггоящей из ядра и электронов, что упрощает реальную картину, но достаточно для понимания принципов взаимодействия элементов этой системы.

Строго говоря, простейшие математические соотношения, отображающие реаль­ные ситуации, также не являются абсолютно детерминированными, поскольку при суммировании яблок не учитывается, что они не бывают абсолютно одинаковыми, а члограммы можно измерить только с некоторой точностью.

Иными словами, для отображения сложного объекта в виде хорошо организо-;--..;нной системы приходится выделять существенные и не учитывать относительно >. ^-существенные для конкретной цели рассмотрения компоненты, а при необходп-v.-jcthболее детального описания нужно уточнить цель, указав с какой степенью глубины нас интересует исследуемый объект, и построить новую (отображающую его) систему с учетом уточненной цели.

Например, при описании атома можно учесть протоны, нейтроны, мезоны и д; гуте микрочастицы, не рассматриваемые в планетарной модели системы. При исследовании сложного радиоэлектронного устройства после предварительного его отображения с помощью обобщенной блок-схемы разрабатывают принципиальную схему, проводят соответствующие расчеты для определения номиналов элементов, входящих в нес и реализующих необходимый режим ее функционирования, и т. д.

При представлении объекта в виде хорошо организованной си­стемы задачи выбора целей и определения средств их достижения (элементов, связен) не разделяются. Проблемная ситуация может быть описана в виде выражении, связывающих цель со средства (т. е. в виде критерия функционирования, критерия или показателя эф­фективности, целевой функции и т. п.), которые могут быть пред­ставлены сложным уравнением, формулой, системой уравнений или сложных математических моделей, включающих и уравнения, к неравенства, и т. п. При этом иногда говорят, что цель представ­ляется в виде критерия функционирования или эффективности, в то время как в подобных выражениях объединены и цель, и-средства.