4. Соответствие между требуемой точностью результатов моделирования и сложностью модели. Модели по своей природе всегда носят приближенный характер. Возникает вопрос, каким должно быть это приближение. С одной стороны, чтобы отразить все сколько-нибудь существенные свойства, модель необходимо детализировать. С другой стороны, строить модель, приближающуюся по сложности к реальной системе, очевидно, не имеет смысла. Она не должна быть настолько сложной, чтобы нахождение решения оказалось слишком затруднительным. Компромисс между этими двумя требованиями достигается нередко путем проб и ошибок. Практическими рекомендациями по уменьшению сложности моделей являются:
• изменение числа переменных, достигаемое либо исключением несущественных переменных, либо их объединением. Процесс преобразования модели в модель с меньшим числом переменных и ограничений называют агрегированием. Например, все типы ЭВМ в модели гетерогенных сетей можно объединить в четыре типа - ПЭВМ, рабочие станции, большие ЭВМ (мейнфрей-мы), кластерные ЭВМ;
• изменение природы переменных параметров. Переменные
параметры рассматриваются в качестве постоянных, дискретные -
в качестве непрерывных и т.д. Так, условия распространения ра
диоволн в модели радиоканала для простоты можно принять
постоянными;
• изменение функциональной зависимости между переменны
ми. Нелинейная зависимость заменяется обычно линейной, дис
кретная функция распределения вероятностей - непрерывной;
• изменение ограничений (добавление, исключение или мо
дификация). При снятии ограничений получается оптимистичное
решение, при введении - пессимистичное. Варьируя ограничени
ями, можно найти возможные граничные значения эффективно
сти. Такой прием часто используется для нахождения предвари
тельных оценок эффективности решений на этапе постановки
задач;
• ограничение точности модели. Точность результатов мо
дели не может быть выше точности исходных данных.
5. Баланс погрешностей различных видов. В соответствии с
принципом баланса необходимо добиваться, например, баланса
систематической погрешности моделирования за счет отклоне
ния модели от оригинала и погрешности исходных данных, точ
ности отдельных элементов модели, систематической погрешно
сти моделирования и случайной погрешности при интерпрета
ции и осреднении результатов.
6. Многовариантность реализаций элементов модели. Разно
образие реализаций одного и того же элемента, отличающихся
по точности (а следовательно, и по сложности), обеспечивает ре
гулирование соотношения «точность/сложность».
7. Блочное строение. При соблюдении принципа блочного
строения облегчается разработка сложных моделей и Появляется
возможность использования накопленного опыта и готовых бло
ков с минимальными связями между ними. Выделение блоков
производится с учетом разделения модели по этапам и режимам
функционирования системы. К примеру, при построении модели
для системы радиоразведки можно выделить модель работы из
лучателей, модель обнаружения излучателей, модель пеленгова
ния и т.д.
В зависимости от конкретной ситуации возможны следующие подходы к построению моделей:
56
Глава
• непосредственный анализ функционирования системы;
• проведение ограниченного эксперимента на самой системе;
• использование аналога;
• анализ исходных данных.
Имеется целый ряд систем, которые допускают проведение непосредственных исследований по выявлению существенных параметров и отношений между ними. Затем либо применяются известные математические модели, либо они модифицируются, либо предлагается новая модель. Таким образом, например, можно вести разработку модели для направления связи в условиях мирного времени.
При проведении эксперимента выявляются значительная часть существенных параметров и их влияние на эффективность системы. Такую цель преследуют, например, все командно-штабные игры и большинство учений.
Если метод построения модели системы не ясен, но ее структура очевидна, то можно воспользоваться сходством с более простой системой, модель для которой существует.
К построению модели можно приступить на основе анализа исходных данных, которые уже известны или могут быть получены. Анализ позволяет сформулировать гипотезу о структуре системы, которая затем апробируется. Так появляются первые модели нового образца иностранной техники при наличии предварительных данных об их технических параметрах.
Разработчики моделей находятся под действием двух взаимно противоречивых тенденций: стремления к полноте описания и стремления к получению требуемых результатов возможно более простыми средствами. Достижение компромисса ведется обычно по пути построения серии моделей, начинающихся с предельно простых и восходящих до высокой сложности (существует известное правило: начинай с простых моделей, а далее усложняй). Простые модели помогают глубже понять исследуемую проблему. Усложненные модели используются для анализа влияния различных факторов на результаты моделирования. Такой анализ позволяет исключать некоторые факторы из рассмотрения. Сложные системы требуют разработки целой иерархии моделей, различающихся уровнем отображаемых операций. Выделяют такие уровни, как вся система, подсистемы, управляющие объекты и др.
57 |
Основы системного анализа
Рассмотрим один конкретный пример - модель развития экономики (модель Харрода). Эта упрощенная модель развития экономики страны предложена английским экономистом Р. Харро-дом. В модели учитывается один определяемый фактор - капитальные вложения, а состояние экономики оценивается через размер национального дохода.
Для математической постановки задачи введем следующие обозначения:
• У, - национальный доход в год t;
• Kt - производственные фонды в год t;
• Ct - объем потребления в год t;
• St- объем накопления в год t;
• Vt - капитальные вложения в год /.
Будем предполагать, что функционирование экономики происходит при выполнении следующих условий:
• условие баланса доходов и расходов за каждый год
Г,= С, + 5,;
• условие исключения пролеживания капитала
St = Vt;
• условие пропорционального деления национального го
дового дохода
S,=aYt,
Два условия принимаются для характеристики внутренних экономических процессов. Первое условие характеризует связь капитальных вложений и общей суммы производственных фондов, второе - связь национального годового дохода и производственных фондов.
Капитальные вложения в год tмогут рассматриваться как прирост производственных фондов или производная от функции производственные фонды принимается как капитальные годовые вложения:
dt
Национальный доход в каждый год принимается как отдача производственных фондов с соответствующим нормативным коэффициентом фондоотдачи:
58
Глава 1
Основы системного анализа
59
Соединяя условия задачи, можно получить следующее соотношение:
Y=Z- = — = -— a adt a dt
Отсюда следует итоговое уравнение Харрода:
Ь^аТ.
dt
Его решением является экспоненциальное изменение национального дохода по годовым интервалам:
V —V oat/b
г, - /Ое
Несмотря на упрощенный вид математической модели, ее результат может быть использован для укрупненного анализа национальной экономики. Параметры а и Ъ могут стать параметрами управления при выборе плановой стратегии развития в целях максимального приближения к предпочтительной траектории изменения национального дохода или для выбора минимального интервала времени достижения заданного уровня национального дохода.
133
ЭТАПЫ ПОСТРОЕНИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ
Сущность построения математической модели состоит в том, что реальная система упрощается, схематизируется и описывается с помощью того или иного математического аппарата. Можно выделить следующие основные этапы построения моделей.
1. Содержательное описание моделируемого объекта. Объекты моделирования описываются с позиций системного подхода. Исходя из цели исследования устанавливаются совокупность элементов, взаимосвязи между элементами, возможные состояния каждого элемента, существенные характеристики состояний и
соотношения между ними. Например, фиксируется, что если значение одного параметра возрастает, то значение другого - убывает и т.п. Вопросы, связанные с полнотой и единственностью набора характеристик, не рассматриваются. Естественно, в таком словесном описании возможны логические противоречия, неопределенности. Это исходная естественно-научная концепция исследуемого объекта. Такое предварительное, приближенное представление системы называют концептуальной моделью. Для того чтобы содержательное описание служило хорошей основой для последующей формализации, требуется обстоятельно изучить моделируемый объект. Нередко естественное стремление ускорить разработку модели уводит исследователя от данного этапа непосредственно к решению формальных вопросов. В результате построенная без достаточного содержательного базиса модель оказывается непригодной к использованию.
На этом этапе моделирования широко применяются качественные методы описания систем, знаковые и языковые модели.