Смекни!
smekni.com

Отрывок из учебника по теории систем и системному анализу (стр. 2 из 16)



их взаимосвязи, но и предлагаются методики составления сцена­риев с использованием ЭВМ.

\ На практике по типу сценариев разрабатывались прогнозы в некоторых отраслях промышленности. В настоящее время раз-ндвидностью сценариев можно считать предложения к комплек­сным программам развития отраслей народного хозяйства, под-готавливаемыеt организациями или специальными комиссиями. Существенную помощь в подготовке сценариев оказывают спе­циалисты по системному анализу. Весьма перспективной пред­ставляется разработка специализированных информационно-поисковых систем, накапливающих прогнозную информацию по данной отрасли и по смежным отраслям.

Сценарий является предварительной информацией, на осно­ве которой проводится дальнейшая работа по прогнозированию или разработке вариантов проекта. Таким образом, сценарий помогает составить представление о проблеме, а затем присту­пить к более формализованному представлению системы в виде графиков, таблиц для проведения других методов системного анализа.

2.4.3. МЕТОДЫ ЭКСПЕРТНЫХ ОЦЕНОК

Группа методов экспертных оценок наиболее часто исполь­зуется в практике оценивания сложных систем на качественном уровне. Термин «эксперт» происходит от латинского слова expert - «опытный».

При использовании экспертных оценок обычно предполага­ется, что мнение группы экспертов надежнее, чем мнение отдель­ного эксперта. В некоторых теоретических исследованиях отме­чается, что это предположение не является очевидным, но одно­временно утверждается, что при соблюдении определенных требований в большинстве случаев групповые оценки надежнее индивидуальных. К числу таких требований относятся: распре­деление оценок, полученных от экспертов, должно быть «глад­ким»; две групповые оценки, данные двумя одинаковыми подгруппами, выбранными случайным образом, должны быть близки.

8—20


114


Глава 2


Основы оценки сложных систем


115



Все множество проблем, решаемых методами экспертных оценок, делится на два класса. К первому классу относятся та­кие, в отношении которых имеется достаточное обеспечение ин­формацией. При этом методы опроса и обработки основыва­ются на использовании принципа «хорошего измерителя», т.е. эксперт источник достоверной информации; групповое мне­ние экспертов близко к истинному решению. Ко второму клас­су относятся проблемы, в отношении которых знаний для уве­ренности и справедливости указанных гипотез недостаточно. В этом случае экспертов нельзя рассматривать как «хороших из­мерителей» и необходимо осторожно подходить к обработке результатов экспертизы.

Экспертные оценки несут в себе как узкосубъективные черты, присущие каждому эксперту, так и коллективно-субъективые, присущие коллегии экспертов. И если первые устраняются в про­цессе обработки индивидуальных экспертных оценок, то вторые не исчезают, какие бы способы обработки не применялись.

Этапы экспертизы формирование цели, разработка проце­дуры экспертизы, формирование группы экспертов, опрос, ана­лиз и обработка информации.

При формулировке цели экспертизы разработчик должен выработать четкое представление о том, кем и для каких целей будут использованы результаты.

При обработке материалов коллективной экспертной оценки используются методы теории ранговой корреляции. Для количе­ственной оценки степени согласованности мнений экспертов при­меняется коэффициент конкордации W, который позволяет оце­нить, насколько согласованы между собой ряды предпочтитель­ности, построенные каждым экспертом. Его значение находится в пределах 0 < W < I, где W = 0 означает полную противополож­ность, aW = 1 - полное совпадение ранжировок. Практически достоверность считается хорошей, если W = 0,7-0,8.

Небольшое значение коэффициента конкордации, свидетель­ствующее о слабой согласованности мнений экспертов, является следствием того, что в рассматриваемой совокупности экспер­тов действительно отсутствует общность мнений или внутри рас­сматриваемой совокупности экспертов существуют группы с вы­сокой согласованностью мнений, однако обобщенные мнения таких групп противоположны.


Для наглядности представления о степени согласованности мнений двух любых экспертов А и В служит коэффициент пар­ной ранговой корреляции р, он принимает значения -1 < р < +1. Значение р = +1 соответствует полному совпадению оценок в рангах двух экспертов (полная согласованность мнений двух экс­пертов), а значение р = -1 -двум взаимно противоположным ран­жировкам важности свойств (мнение одного эксперта противо­положно мнению другого).

Тип используемых процедур экспертизы зависит от задачи оценивания.

К наиболее употребительным процедурам экспертных изме­рений относятся:

• ранжирование;

• парное сравнивание;

• множественные сравнения;

• непосредственная оценка;

• Черчмена-Акоффа;

• метод Терстоуна;

• метод фон Неймана-Моргенштерна.

Целесообразность применения того или иного метода во мно­гом определяется характером анализируемой информации. Если оправданы лишь качественные оценки объектов по некоторым качественным признакам, то используются методы ранжирова­ния, парного и множественного сравнения.

Если характер анализируемой информации таков, что целе­сообразно получить численные оценки объектов, то можно ис­пользовать какой-либо метод численной оценки, начиная от не­посредственных численных оценок и кончая более тонкими ме­тодами Терстоуна и фон Неймана-Моргенштерна.

При описании каждого из перечисленных методов будет пред­полагаться, что имеется конечное число измеряемых или оцени­ваемых альтернатив (объектов) А = {а^ ... ,ап} и сформулирова­ны один или несколько признаков сравнения, по которым осу­ществляется сравнение свойств объектов. Следовательно, методы измерения будут различаться лишь процедурой сравнения объек­тов. Эта процедура включает построение отношений между объек­тами эмпирической системы, выбор преобразования ф и опреде­ление типа шкал измерений. С учетом изложенных выше обстоя­тельств рассмотрим каждый метод измерения. 8*


116


Глава 2


Основы оценки сложных систем


117



Ранжирование. Метод представляет собой процедуру упоря­дочения объектов, выполняемую экспертом. На основе знаний и опыта эксперт располагает объекты в порядке предпочтения, ру­ководствуясь одним или несколькими выбранными показателя­ми сравнения. В зависимости от вида отношений между объекта­ми возможны различные варианты упорядочения объектов.

Рассмотрим эти варианты. Пусть среди объектов нет одина­ковых по сравниваемым показателям, т.е. нет эквивалентных объектов. В этом случае между объектами существует только от­ношение строгого порядка. В результате сравнения всех объек­тов по отношению строгого порядка составляется упорядочен­ная последовательность а{ > а2> ... > aN, где объект с первым номером является наиболее предпочтительным из всех объектов, объект со вторым номером менее предпочтителен, чем первый объект, но предпочтительнее всех остальных объектов и т.д. По­лученная система объектов с отношением строгого порядка при условии сравнимости всех объектов по этому отношению обра­зует полный строгий порядок. Для этого отношения доказано существование числовой системы, элементами которой являют­ся действительные числа, связанные между собой отношением неравенства >. Это означает, что упорядочению объектов соот­ветствует упорядочение чисел х, >... > xn, где х,—ф Ц.). Возмож­на и обратная последовательность х, <... < xn, в которой наибо­лее предпочтительному объекту приписывается наименьшее чис­ло и по мере убывания предпочтения объектам приписываются большие числа.

Соответствие перечисленных последовательностей, т.е. их гомоморфизм, можно осуществить, выбирая любые числовые представления. Единственным ограничением является монотон­ность преобразования. Следовательно, допустимое преобразова­ние при переходе от одного числового представления к другому должно обладать свойством монотонности. Таким свойством допустимого преобразования обладает шкала порядков, поэто­му ранжирование объектов есть измерение в порядковой шкале.

В практике ранжирования чаще всего применяется числовое представление последовательности в виде натуральных чисел:

т.е. используется числовая последовательность. Числа х,, х2,..., xnв этом случае называются рангами и обычно обозначаются


буквами г, , г2, ... , rN. Применение строгих численных отноше­ний «больше» (>), «меньше» (<) или «равно» (=) не всегда позво­ляет установить порядок между объектами. Поэтому наряду с ними используются отношения для определения большей или меньшей степени какого-то качественного признака (отношения частичного порядка, например полезности), отношения типа «более предпоч­тительно» (>), «менее предпочтительно» (<), «равноценно» ( = ) или «безразлично» (~). Упорядочение объектов при этом может иметь, например, следующий вид:

Такое упорядочение образует нестрогий линейный порядок.

Для отношения нестрогого линейного порядка доказано су­ществование числовой системы с отношениями неравенства и равенства между числами, описывающими свойства объектов. Любые две числовые системы для нестрогого линейного порядка связаны между собой монотонным преобразованием. Следова­тельно, ранжирование при условии наличия эквивалентных объек­тов представляет собой измерение также в порядковой шкале.