Чтобы получить 100-метровые горизонтальные проложения, следует, учитывая наклон местности, увеличивать длину откладываемых наклонных отрезков. Поэтому в них вводят поправки за наклон со знаком плюс. Часто вместо введения поправок, натягивая мерную ленту, удерживают её в горизонтальном положении и проектируют отвесом её приподнятый конец на землю. Чтобы лента меньше провисала, поддерживают её в середине.
Кроме пикетов, колышком и сторожком закрепляют плюсовые точки (или просто "плюсы"), где на трассе изменяется наклон местности. На сторожке в этом случае пишут номер предыдущего пикета и расстояние от него в метрах, например ПК13+46, что означает 46 м после пикета № 13 или 1346 м от начала пикетажа.
Плюсовыми точками фиксируют также места пересечения трассой любых сооружений, дорог, линий связи, водотоков, границ угодий и т. д.
Поперечники. Там, где местность имеет заметный (более 1:5) поперечный уклон, на каждом пикете и плюсовой точке разбивают перпендикуляры к трассе, называемые поперечниками. Поперечники разбивают в обе стороны длиной 15-30 м с таким расчётом, чтобы обеспечить съёмкой всю ширину полосы местности под будущие сооружения дороги (земляное полотно, водоотводные устройства, здания и пр.). Конечные точки поперечника закрепляют точкой и сторожком, плюсовые точки, располагаемые в местах изменения наклона местности, - только сторожком. На сторожках пишут расстояние от оси трассы с буквой "П" (справа от оси трассы) или "Л" (слева от оси трассы).
Плановая привязка трассы. Начало и конец трассы привязывают к пунктам государственной геодезической сети, например, с помощью теодолитных ходов. В результате измеренные на трассе углы и расстояния совместно с ходами привязки образуют единый разомкнутый теодолитный ход. Это позволяет проконтролировать правильность выполненных линейных и угловых измерений и вычислить координаты вершин углов поворота трассы.
На длинной трассе привязку к государственной геодезической сети выполняют не реже чем через 25 км, а при удалении пунктов от трассы более чем на 3 км - не реже чем через 50 км.
Съёмка полосы местности. В ходе разбивки пикетажа выполняют съёмку ситуации в полосе местности шириной по 100 м в обе стороны от оси трассы. При этом полосу шириной 25 м вправо и влево снимают инструментально - главным образом, методом перпендикуляров, а дальше - глазомерно. Результаты съёмки в виде абриса масштаба 1:2000 заносят в пикетажный журнал, изготовляемый из листов миллиметровой бумаги размером 10´15 см.
По середине листа проводят вертикальную прямую, изображающую ось трассы. На ней штрихами отмечают положение пикетов и плюсов и рядом подписывают их значения. Каждая новая страница начинается с пикета, которым закончена предыдущая. В местах поворота трассы стрелкой показывают направление поворота и надписывают румб следующей прямой. На свободном месте пишут основные элементы кривой. Показывают расстояния от местных предметов до оси трассы и габариты строений. Делают записи о типе дорог, характеристике леса, карьерах - обо всём, что может иметь значение для предстоящего строительства.
43
Круговые кривые. Железнодорожные линии (также и автомобильные дороги) в плане состоят из прямолинейных участков, сопряжённых между собой кривыми. Наиболее простой и распространённой формой кривой является дуга окружности. Такие кривые носят название круговых кривых. На железных дорогах применяют круговые кривые со следующими радиусами: 4000, 3000, 2000, 1800, 1500, 1200, 1000, 800, 700, 600, 500, 400 и 300 м. Радиус кривой выбирают при проектировании дороги, руководствуясь конкретными техническими условиями.
Главными точками кривой, определяющими её положение на местности, являются вершина угла ВУ, начало кривой НК, середина кривой СК и конец кривой КК (рис. 15.3).
Рис. 15.3 Схема круговой кривой
Основные элементы кривой – её радиус R и угол поворота a. К основным элементам относятся также:
– тангенс кривой Т (или касательная) - отрезок прямой между вершиной угла и началом или концом кривой;
– кривая К - длина кривой от начала кривой до её конца;
– биссектриса кривой Б - отрезок от вершины угла до середины кривой;
– домер Д - разность между длиной двух тангенсов и кривой.
Во время изысканий угол a измеряют, а радиус R назначают. Остальные элементы вычисляют по формулам, вытекающим из прямоугольного треугольника с вершинами ВУ, НК, О (центр окружности):
Т = R×tg(a/2); К = R×a = p R a°¤180°; Б = R [sec(a/2) - 1], (15.1)
где a° - угол поворота в градусах.
Домер вычисляют по формуле
. (15.2)
Вместо вычислений по формулам можно воспользоваться таблицами для разбивки кривых на железных дорогах, где по заданным радиусу и углу поворота сразу находят значения Т, К, Б и Д.
В месте поворота трассы пикетаж ведётся по кривой. Пикетажное положение главных точек кривой определяют по формулам:
ПК НК = ПК ВУ - Т; ПК КК = ПК НК + К; ПК СК = ПК НК + К/2. (15.3)
Правильность вычислений контролируют по формулам:
ПК КК = ПК ВУ + Т - Д; ПК СК = ПК ВУ + Д/2. (15.4)
Пример.
Измерено a = 18°19¢ и задан радиус R = 600 м. Вершина угла расположена на пикете 6 + 36,00.
По формулам (15.1) и (15.2) или по таблицам находим элементы кривой: Т = 96,73 м; К = 191,81 м; Д = 1,65 м; Б = 7,75 м.
Вычислим пикетажное положение главных точек:
Контроль:
ПК ВУ 6 + 36,00 ПК ВУ 6 + 36,00
- Т 96,73 + Т 96,73
ПК НК 5 + 39,27 7 + 32,73
+ К 1 + 91,81 - Д 1,65
ПК КК 7 + 31,08 ПК КК 7 + 31,08
ПК НК 5 + 39,27 ПК ВУ 6 + 36,00
+ К/2 95,90 - Д/2 0,82
ПК СК 6 + 35,17 ПК СК 6 + 35,18
Переходные кривые. Непосредственное сопряжение прямого участка пути с круговой кривой приводит к тому, что во время движения поезда в месте сопряжения внезапно возникает центробежная сила F, прямо пропорциональная квадрату скорости движения v и обратно пропорциональная радиусу кривой . Чтобы обеспечить постепенное нарастание центробежной силы, между прямой и круговой кривой вставляют переходную кривую, радиус кривизны r которой плавно изменяется от ¥ до R. Если положить, чтобы центробежная сила менялась пропорционально расстоянию s от начала кривой, то получим
,
где s и r - текущие значения расстояния от начала переходной кривой и ее радиуса кривизны;
R – радиус кривизны в конце переходной кривой.
Индексом k отмечены значения переменных в конце переходной кривой.
Для радиуса кривизны переходной кривой в текущей точке i найдём:
r = lR/s, (15.5)
где через l обозначена длина переходной кривой sk. Кривая, описываемая уравнением (15.5), в математике называется клотоидой, или радиоидальной спиралью.
Угол поворота трассы на переходной кривой. На бесконечно малом отрезке кривой ds (рис. 15.4, а) происходит поворот трассы на угол
.
Подставляя выражение радиуса кривизны r из (15.5), получим
.
Выполним интегрирование от начала кривой НК, где j = 0 и s = 0, до текущей точки i:
,
откуда
Rlj = s2/2.
б)
а)
Рис. 15.4 Схема переходной кривой:
а – углы поворота трассы: φ – в текущей точке i, β – в конце
переходной кривой (точка КПК); б - приращения координат
Из полученного уравнения вытекают формулы:
; ; l = 2Rb, (15.6)
где b - угол поворота трассы в конце переходной кривой;
l - длина переходной кривой;
R - радиус кривизны в конце переходной кривой, равный радиусу следующей за нею круговой кривой.
Координаты точки переходной кривой. Совместим начало координат с началом переходной кривой и направим ось x по касательной к ней (см. рис. 15.4, а). Бесконечно малому приращению дуги кривой соответствуют бесконечно малые приращения координат (рис. 15.4, б):
dx = cosj×ds; dy = sinj×ds. (15.7)
Разложим синус и косинус в ряд и, удержав в разложениях по два члена, подставим в них выражения для j из (15.6):
cosj = 1-j2/2 = 1 - s4/(8R2l2);
sinj = j - j3/6 = s2/(2Rl) - s6/(48R3l3).
Подставляя полученные выражения в (15.7) и выполняя интегрирование, найдём:
; (15.8)
. (15.9)
Смещение начала кривой (сдвижка). На рис. 15.5 дуга НК-КПК представляет собой переходную кривую, переходящую после точки КПК в круговую. Продолжим круговую кривую до точки Q, где её направление, параллельно оси x. Обозначим через m смещение, параллельное оси x, начала переходной кривой относительно точки Q, в которой начиналась бы круговая кривая при отсутствии переходной. Через p обозначим смещение в перпендикулярном направлении. Из рис. 15.5 видно:
,
где xКПК и yКПК - координаты конца переходной кривой, вычисляемые по формулам (15.8) и (15.9) с аргументом s = l .
Сочетание круговой кривой с переходными. На рис. 15.6 показана кривая, поворачивающая трассу на угол a и состоящая из круговой части с радиусом R и двух переходных кривых одинаковой длины l.
Рис. 15. 5 Смещение начала переходной кривой
Рис. 15.6 Сопряжение круговой кривой
с переходными
Если бы не было переходных кривых, в образованный прямыми линиями трассы угол была бы вписана дуга окружности радиуса R, равная Q-СК-Q1 и имеющая длину K = Ra.
При наличии переходных кривых на каждой из них происходит поворот трассы на угол b, отчего на долю круговой кривой приходится поворот на угол a-2b. Поэтому суммарная длина кривой равна
Kc = R (a-2b) + 2l = Ra - 2Rb + 2l = K - l + 2l = K + l.
Тангенс и биссектриса определяются по формулам:
Тс = T + m + Tp; Бc = Б + Бp,
где Тp = ptg(a/2); Бp = psec(a/2).
Домер в этом случае равен
.
В полевых условиях значения m, Тp и Бp вычисляют на микрокалькуляторе или выбирают из таблиц для разбивки кривых на железных дорогах. Пикетажное положение главных точек кривой вычисляют по формулам, аналогичным (15.3) и (15.4).
44
ереходная кривая должна:
• обеспечивать плавный характер положения трассы постепенным изменением кривизны и тем самым осуществлять движение с постоянной скоростью при равномерном изменении возникающего при движении по ней центробежного ускорения;
• служить в качестве участка изменению поперечного уклона от прямой к круговой кривой;
• создавать оптически благоприятное положение трассы.