Соответственно, широкое распространение получила теория, что Земля состоит из твердого ядра, вязкой мантии и твердой коры. Эту теорию разработали в начале XX в. сейсмологи Г. Джеффрис и Б. Гуттенберг, и долгое время она считалась отправной точкой для всех исследований строения земли. Однако в середине прошлого века тщательные сейсмологические исследования позволили предположить, что строение земли более сложное.
Так, ядро состоит из двух частей. Внутреннее ядро твердое, по радиусу оно не превышает 1225 км. Это самая плотная часть Земли, она состоит из металлов, преимущественно железа, а также радиоактивных изотопов калия-40, урана-238 и тория-232. Распад этих элементов обеспечивает образование внутренней энергии тепла планеты. Температура в ядре поднимается, как считается, до 7000 К, а давление достигает 360 ГПа. Внешняя часть ядра жидкая.
За ядром следует мантия, составляющая 67% массы Земли и 83% ее объема. Мантия – толща частично расплавленного вязкого вещества, гораздо более плотного, чем внешняя часть ядра планеты, но все еще не твердого. Она состоит из перидотитов – пород, содержащих силикаты магния, железа, кальция. Так как мантия – самый широкий из слоев Земли, то физические условия во всей ее толще неодинаковы. Чем глубже к ядру планеты, тем выше давление, и вещества мантии претерпевают значительные изменения. На глубине примерно 660 км эти изменения становятся необратимыми, и там образуется граница, через которую мантийное вещество уже не может взаимопроникать.
Таким образом, мантия разделяется на два слоя – верхний и нижний. Нижний слой простирается до земного ядра, и за все время жизни нашей планеты он претерпел малозначительные изменения, верхний же расположен непосредственно под земной корой и образует ее. Между мантией и корой проходит четкая граница, определяемая исследованием движения сейсмических волн – граница Мохоровичича, названная так по фамилии югославского сейсмолога, обнаружившего ее еще в 1909 г.
Говоря о земной коре, образующей континенты, океаны и сушу, на которой мы все живем, нельзя не рассказать о теории литосферных плит. Наружная часть мантии, на которой расположена кора, является, по сути, перегретой вязкой жидкостью. В ней постоянно происходят тепловые процессы, приводящие к деформации литосферы – каменной оболочки Земли. Литосфера напоминает собой потрескавшееся яйцо, где каждая скорлупка – это литосферная плита. Под влиянием процессов, происходящих в мантии, эти плиты постоянно двигаются относительно друг друга.
Еще в XVII вв. людей поражало совпадение береговой линии западного побережья Африки и восточного побережья Южной Америки. Но только теперь наука пришла к пониманию, что некогда эти береговые линии совпадали, образуя один континент, который за миллионы лет раскололся и разошелся по разным полушариям.
Крупнейшими литосферными плитами являются африканская, антарктическая, австралийская, тихоокеанская, евразийская, северо-американская и южно-американская, а более маленькими – индостанская, арабская, карибская, плита наска и плита Скотия. Индостанская плита почти приросла к австралийской еще 50 млн. лет назад. Тихоокеанская плита – самая быстрая, она двигается со скоростью около 70 мм в год, а евразийская – самая медленная. Ее скорость не превышает 21 мм в год.
Исследования строения нашей планеты продолжают вестись все новыми и новыми методами. Ведь посылая аппараты в космос для изучения других планет, мы должны приложить все усилия и для понимания устройства нашей родины. Самая глубокая в мире исследовательская скважина пробурена на Кольском полуострове, ее глубина составляет 12262 метра. Эта скважина была заложена в мае 1970 г в рамках первой программы сверхглубокого континентального бурения. Второй по глубине в СССР стала Саатлинская скважина на территории Азербайджана, ее глубина составила 8324 м. Проектная глубина равнялась 11 км, но, к сожалению, как независимое государство Азербайджан не смог финансировать такой долгосрочный научный проект. Во времена СССР было пробурено еще 10 научных скважин глубиной от 4 до 9 км. В настоящее время в России продолжается бурение Уральской сверхглубокой скважины.
5. Относительный и абсолютный возраст Земли и методы его определения
Необходимо заметить, что людей первоначально заинтересовал возраст не Земли как небесного тела, а именно обитаемой Земли - как сейчас сказали бы, биосферы. Однако ясно, что, определив время возникновения жизни, мы тем самым получим минимальный срок существования и самой планеты. А поскольку источником жизни на Земле вполне справедливо полагали энергию Солнца, то возраст нашего светила, в свою очередь, даст нам максимальный срок существования биосферы.
Необходимо было найти источник, питающий своей энергией Солнце - иначе вообще рушился закон сохранения энергии. И вот в 1853 г. Г. Гельмгольцу удалось предложить вполне приемлемую для того времени гипотезу. Он предположил, что Солнце постоянно сжимается - верхние его слои под собственной тяжестью как бы падают на нижние, а их потенциальная энергия при этом убывает (ведь масса слоев постоянна, а высота их "подъема" над центром Солнца уменьшается); именно "теряющаяся" потенциальная энергия верхних слоев и выделяется в виде тепла и света. Возникает вопрос: какая скорость этого сжатия необходима для того, чтобы обеспечить нынешнюю светимость Солнца? Ответ: очень небольшая - за 250 лет (то есть за все время существования современной астрономии) - всего-навсего 37 км; для сравнения: нынешний диаметр Солнца - почти 1,5 миллиона км. Очевидно, что такие изменения диаметра никакими измерительными приборами не ловятся.
Гипотеза эта имела и одно следствие, прямо касающееся возраста Земли. Если считать, что светимость Солнца (и, соответственно, скорость его сжатия) в прежние времена была примерно такой же, как сейчас, то, согласно расчетам Гельмгольца, 18 миллионов лет назад диаметр светила должен был превышать нынешний диаметр орбиты Земли. Следовательно, наша планета никак не старше этих самых 18 миллионов лет. Физиков эта цифра вполне удовлетворила, и они сочли вопрос о предельном возрасте Земли исчерпанным, но вот геологи восстали против такой датировки самым решительным образом.
Дело в том, что геология уже накопила к тому времени огромное количество эмпирических (т.е. основанных на непосредственном опыте) данных о строении поверхностных слоев планеты и о происходящих на ней процессах (например, о движении горных ледников, водной эрозии и т.д.). В 1830 году Ч. Лайелль, исходя из того, что геологические процессы (прежде всего осадконакопление) в прошлом должны были протекать примерно с той же скоростью, что и ныне - принцип актуализма [01] - подсчитал, что время, необходимое для образования одних только доступных для прямого изучения осадочных толщ, должно составлять несколько сот миллионов лет. Расчеты Лайелля основывались на гигантском фактическом материале и казались геологам и биологам гораздо более близкими к истине, чем гельмгольцевы 18 миллионов лет. Однако логика Гельмгольца казалась неопровержимой - с законом сохранения энергии особо не поспоришь... Для того, чтобы возобладала точка зрения геологов (а правильной, как теперь известно, оказалась именно она) необходимо было найти иной, чем гравитационное сжатие, источник энергии для Солнца.
В 1896 году А. Беккерель открыл явление радиоактивности. Радиоактивность оказалась одним из типов ядерных реакций - изменений в комбинациях составляющих атомное ядро протонов и нейтронов; при этих реакциях выделяется неизмеримо больше энергии, чем при любых химических превращениях. В 1905 году А. Эйнштейн установил, что в ядерных реакциях массу можно рассматривать как чрезвычайно концентрированную форму энергии, и вывел свою знаменитую формулу их эквивалентности: Е = mc2 , где с - скорость света. Величина c2 чрезвычайно велика, а потому даже небольшое количество массы эквивалентно огромному количеству энергии: 1 г массы = 21,5 млрд ккал (столько энергии выделится, если сжечь два с половиной миллиона литров бензина). Если предположить, что Солнце черпает энергию за счет ядерных реакций (каких именно - пока неважно, эйнштейнова формула справедлива для них всех), то для обеспечения его нынешней светимости необходимо расходовать 4600 тонн вещества в секунду.
Много ли это? Ничтожно мало: расчеты показывают, что происходящее при этом изменение тяготения Солнца приведет к увеличению времени оборота Земли вокруг светила - т.е. удлинению земного года - всего на 1 секунду за 15 миллионов лет, что, разумеется, нельзя установить никакими измерениями. Таким образом, проблема практически неиссякаемого источника энергии для Солнца была решена, и теперь уже ничто не препятствовало принятию геологической оценки возраста Земли - "не менее нескольких сот миллионов лет".
Однако открытие радиоактивности имело и еще одно следствие: это явление само по себе позволило создать новый метод определения возраста планеты, несравненно более точный, чем все предыдущие. Суть его заключается в следующем. Известно, что атом урана нестабилен: он испускает энергию, потоки частиц, и со временем превращается в атом свинца - устойчивого элемента, не подверженного дальнейшим превращениям. Природа этого типа реакций такова, что скорость ядерного распада абсолютно постоянна, и никакие внешние факторы (температура, давление) на нее не влияют. Значит, если экспериментально определить темп этих изменений за короткий промежуток времени, то его можно совершенно точно предсказать и для более длительного промежутка. Так вот, было установлено, что в любой порции урана (точнее - изотопа 238U) половина составляющих его атомов превратится в свинец за 4,5 млрд лет; соответственно, через 9 млрд лет урана останется 1/2 от 1/2, то есть четверть, и т.д. Срок в 4,5 млрд лет называют периодом полураспада 238U.