Золото в высокосерной среде
В отличие от низкосерных эпитермальных систем, химический состав гидротерм, непосредственно связанных с переносом золота и отложением в высокосерных системах изучен плохо.
Известно, что первичные гидротермы в этих системах были очень кислыми, относительно окисляющими, возможно насыщенные хлором и с более высоким содержанием общей серы, чем низкосерные системы. Однако, Stoffregenи Hedenquistetal., приводят доказательства осаждения золота из ранних вулканогенных гидротерм. Кроме того, поздние гидротермы более похожи на метеорные воды, чем на вулканогенные. Они менее минерализованы, более восстановленные, менее кислые. До тех пор пока нельзя лучше охарактеризовать химическую эволюцию этих гидротерм последующие идеи будут, в основном, предположительными.
Рисунок 6,а, слегка видоизменённый из Stoffregen, показывает значительную геохимическую эволюцию гидротерм Summitville. А1 и А2 - это первичные выщелачивающиеся гидротермы, В - относится к золотой минерализации; заметны их повышенный рН и менее окисленное состояние. С - это поздняя стадия развития гидротерм, более окисленных. Этот химический состав, показанный для сравнения на Рис.6Ь, - типичные химические условия для низкосерной минерализации. Схема развития гидротерм Summutville аналогична, сделанной ранее для Нансатсу.
Если общая сера и хлор для высокосерных условий справедливы, то как AuCl2-, так и Au2-будут оба давать сходную растворимость золота в условиях А-первичных вулканогенных гидротерм. Таким образом, если рН возрастает, то AuCl2-будет уменьшать свою стабильность, то Au2-будет возрастать, компенсируя, таким образом, изменение. Stoffregenотмечал, что в Summitville не наблюдается концентрации золота, очевидно, там, где происходит нейтрализация. Если гидротермы могут восстанавливаться, то оба комплекса должны уменьшить стабильность, а с увеличением рН, отмечаемом для среды В, этот фактор компенсирует.
Если В являются глубинными гидротермами, переносящими золото, то доказательство такого фактора, как смешение с кислыми гидротермами, нужно искать в механизме осаждения. Эта дискуссия также допускает, что общая сера и хлор не изменялись и что не было температурных изменений.
Следовательно, до тех пор, пока нет данных об этой среде, нельзя быть уверенным в какой-либо геохимической модели высокосерных систем. Это, однако, не должно мешать их разведке.
а. Диаграмма РН2 - рН, построенная для высоких концентраций S, Cl и К, существующих в высокосерных системах. Концентрация общей серы построена в зависимости от размера поля самородной серы. Stoffregenвывел условия, связанные с гидротермальными изменениями в следующем виде: сильное выщелачивание или остаточный кремнезём - А1; алунит - ореол каолинита - А2; глубинные рудообразующие гидротермы, в которых халькопирит и теннантит стабильны - В; и условия главной стадии золотого рудоотложения, где энергит, ковелин и борнит стабильны - С. В главной стадии, растворимость хлоридов золота становится значительной относительно бисульфидов золота, ограничивающих процессы, вызывающие отложение золота.
в. Диаграмма РН2 - рН, показывающая относительные стабильности минералов, обычно встречающихся в низкосерных системах, и стабильные соединения серы. Химический состав рудообразующих гидротерм, наблюдаемый в активных системах и полученный по минералогии месторождений, показан в виде "А". При этих условиях растворимость бисульфида золота в основном превышает растворимость хлорида золота и ответственна за перенос золота. Кипение будет вызывать рост рН, вследствие потери СО2 и резкое уменьшение растворимости золота за счёт выделения Н^. Построеноподанным Stoffregen 191985), Hedenquist, Henley, Helgeson, Helgeson et al.,.
Пирит, гематит, магнетит, хлорит, каолинит, К-слюда, адуляр.
Серебро и неблагородные металлы
Серебро переносится в виде комплексов хлора в соответствии с реакцией
Ag2S + 2H+ + 4Cl" = 2AgCl2" + H2S
Хотя в разбавленных хлоридных растворах значительное количество будет переноситься в виде сульфидных комплексов Ag.
В этой реакции рост рН, вследствие кипения и потери СО2, будет происходить с уменьшение растворимости хлорида серебра. Простое разбавление хлоридов может также уменьшить растворимость, хотя кипение должно оказывать доминантное воздействие в большинстве случаев эпитермальных систем.
Растворимость Ag в виде сульфидного комплекса не изучалось в подходящих условиях, несмотря на то, что эти работы проводились в лабораториях. В сильно разбавленных хлоридных растворах значительное количество общего серебра в растворе будет, по-видимому, присутствовать в виде сульфидного комплекса. Серебро, переносимое в виде сульфидного комплекса ведёт себя аналогичным образом, как ранее отмечалось для переноса и отложения сульфидного золота.
Галенит и сфалерит также обычно связаны с минерализацией драгоценных металлов в эпитермальных системах. Поскольку есть некоторые экспериментальные данные для сфалерита в соответствующих условиях, то здесь будет рассмотрена только растворимость галенита.
Рисунок 8 показывает распределение различных хлоридов РЬ в виде функции mCl - основанную на экспериментальных данных.
Из этих данных видно, что PbCl20концентрирует около 50% растворённого Pb. Растворимость галенита может быть описана
PbS + 2H+ + 2Cl" = PbCl20+ H2Sвод
Используя аналитические данные по гидротермам Бродлэндс, получаем mрь = 0.011 ц / кг. Таким образом, реальная растворимость галенита, включая все хлоридные соединения, составит 0.02 цг / кг. Эта оценка значительно ниже того, что показали анализы гидротерм, и, что в этих низкоминерализованных гидротермах должны присутствовать другие комплексные соединения.
Имеющиеся данные не допускают значительных количеств PbOH+ и соединений тиосульфатов Pb в этих условиях, но другие соединения, подобные PbHCO3+ и смешанные гидроокись-хлоридные соединения, могут быть важными.
Рисунок 9 показывает расчётную растворимость галенита в виде функции температуры для 1.0 моль раствора хлорида. Отмечается большая растворимость свинца, чем в гидротермах Бродлэндс при увеличении содержания хлора в 25 раз. Следуя Henleyможно рассчитать увеличение растворимости, ожидаемой при 2650С, если соединения, подобные PbHCO3+, присутствуют. Мы имеем простую реакцию для образования PbHCO3+.
Увеличение хлора по сравнению с гидротермами Бродлэндс не влияет на написанную реакцию за исключением изменений коэффициентов активности. Следовательно, если наблюдаемые цифры для свинца в гидротермах Бродлэндс являются следствием этих или других факторов, то их концентрация может быть определена прямо на Рис. 8.
Если мы сравним растворимость хлорида свинца с концентрациями свинца в Бродлэндс, то станет ясно, что хлоридные комплексы преобладают при повышенной минерализации. Вследствие баланса давлений, в гидротермальной системе с высокоминерализованными гидротермами, рН; этих гидротерм должно быть на 1-1.5 единиц меньше, чем для гидротерм Бродлэндс. Увеличенная растворимость PbHCO3-вследствие этого воздействия частично компенсируется уменьшением mHCO3.
Мы приходим к выводу, что комплексирующие хлориды свинца могут объяснить содержание свинца в растворе в разбавленных активных гидротермальных эпитермальных системах, а также быть важными в высокоминерализованных гидротермах. Однако, комплексирование хлоридов может объяснить перенос серебра во многих системах драгоценных металлов. Следовательно, если комплекс свинца, который ответственен за перенос неблагородного металла в гидротермах с благородными металлами, аналогичен по типу с хлоридным комплексом, то процессы, которые приводят к отложению серебра, могут также вызвать осаждение неблагородного металла.
Из вышеприведённой дискуссии ясно, что преобладающим процессом отложения металлов из хлоридных комплексов, является кипение; увеличение рН в результате выделения СО2 является главным фактором отложения серебра. В случае отложения сульфидов неблагородных металлов, выделение HS действительно увеличивает растворимость металлов, которая противоположна ситуации отложения золота, где растворимость непосредственно связана с содержанием сульфидов. Кипение также ответственно за отложение золота, но по различным причинам, поскольку комплексы представлены различными типами. Эти процессы более детально обсуждаются Henleyetal. и Hedenquist, Henley.