Смекни!
smekni.com

Особенности формирования производственных и ценовых планов (прогнозов) предприятий российской промышленности в 1993-2001 гг. (стр. 8 из 22)

Введем в предыдущую модель точность прогнозирования (точнее - планирования) еще одного показателя - объемов производства. Тогда у нас получится модель, которая предполагает, что очередные прогнозы выпуска формируются в зависимости от точности четырех показателей (трех видов спроса и выпуска):

Q*t = f( Ф(Qt, Q*t-1), Ф(Dt, D*t-1), Ф(Bt, B*t-1), Ф(Nt, N*t-1) ).

Рассматриваемая модель также имела высокое качество подгонки: наблюдаемый уровень значимости всегда был максимальным. Коэффициенты модели были всегда положительны для трех видов спроса и почти всегда для точности предыдущих планов производства. Однако статистически значимым оказалось влияние точности прогнозов бартерного и прочих неденежных видов спроса, точности других показателей не учитывались адаптивным образом при планировании выпуска на очередной период (см. табл.8).

Таблица 8. Характеристики влияния точностей прогнозов выпуска, платежеспособного, бартерного и прочих неденежных видов спроса на производственные планы предприятий

Дата Характеристики качества подгонки модели Коэффициенты модели
Ф(Qt, Q*t-1) Ф(Dt, D*t-1) Ф(Bt, B*t-1) Ф(Nt, N*t-1)
G2 Df Sig
SE
SE
SE
SE
2/00 194.58 228 1.0000 0.1023 0.1120 0.2312 0.1304 0.2474 0.1347 0.4101 0.1385
3/00 208.37 228 1.0000 0.1397 0.1087 0.2126 0.1157 0.3833 0.1256 0.2050 0.1177
4/00 284.33 228 1.0000 0.0165 0.0932 0.0365 0.1000 0.2339 0.1072 0.3402 0.1093
5/00 274.8 228 1.0000 0.1675 0.0992 0.1375 0.1066 0.2848 0.1154 0.2261 0.1256
6/00 240.68 228 1.0000 0.1373 0.0991 0.1924 0.1033 0.3495 0.1191 0.3020 0.1227
7/00 280.96 228 1.0000 -0.0569 0.1004 0.2088 0.1188 0.2427 0.1218 0.5010 0.1341
8/00 216.76 228 1.0000 -0.0840 0.1146 0.2177 0.1271 0.4217 0.1427 0.3873 0.1465
9/00 208.57 228 1.0000 0.0330 0.1069 0.1019 0.1076 0.4709 0.1239 0.3721 0.1275
10/00 226.26 228 1.0000 0.0886 0.1013 0.0450 0.1062 0.2861 0.1234 0.5185 0.1424
11/00 222.24 228 1.0000 0.0058 0.0901 0.2653 0.1045 0.2216 0.1194 0.3669 0.1303
12/00 251.93 228 1.0000 0.0647 0.1088 0.2453 0.1222 0.2772 0.1324 0.4402 0.1455
1/01 257.64 228 1.0000 0.0515 0.1033 0.2062 0.1183 0.2452 0.1286 0.4178 0.1356
2/01 270.78 228 1.0000 -0.0352 0.1033 0.1398 0.1123 0.3256 0.1263 0.4148 0.1324
3/01 229.63 228 1.0000 0.0101 0.0961 0.2188 0.1129 0.4292 0.1314 0.3383 0.1244
4/01 242.77 228 1.0000 0.0791 0.0985 0.1806 0.1018 0.2972 0.1147 0.3577 0.1092
5/01 312.98 228 1.0000 0.0327 0.1043 0.1333 0.1136 0.1928 0.1190 0.5054 0.1211
6/01 252.88 228 1.0000 -0.2133 0.0993 0.1964 0.1091 0.5487 0.1297 0.3509 0.1212
7/01 200.69 228 1.0000 0.0310 0.1038 0.2432 0.1179 0.2845 0.1186 0.4541 0.1490
8/01 249.12 228 1.0000 0.0599 0.1025 0.1069 0.1112 0.2470 0.1286 0.4197 0.1381
9/01 231.01 228 1.0000 -0.0454 0.1001 0.1151 0.1161 0.5540 0.1428 0.3404 0.1397
10/01 237.68 228 1.0000 0.1756 0.1104 0.4493 0.1342 0.2478 0.1312 0.1980 0.1388
11/01 212.09 228 1.0000 -0.0414 0.0977 0.1683 0.1079 0.6023 0.1347 0.3922 0.1318
12/01 179.59 228 1.0000 0.2244 0.1289 0.1660 0.1374 0.4399 0.1749 0.2257 0.1652

Примечание. В таблице приведены: G2 - величина отношения правдоподобия; df - число степеней свободы; Sig - наблюдаемый уровень значимости; коэффициенты

, оценивающие линейную связь (ассоциацию) рангов каждого из факторов с производственными планами, и стандартные ошибки (SE).

Такая ситуация выглядит не очень логичной, поскольку оба статистически значимых показателя становятся после дефолта все менее значимыми для российских промышленных предприятий. Суммарная доля этих видов спроса упала в 2001 г. до 25-20%. Более того, предприятия стараются удерживаться от увеличения объемов таких сделок даже во времена, когда денежный спрос не растет или снижается. Но, возможно, в этом сочетании и следует искать объяснение. Если нежелаемые явления имеют фактическую тенденцию к сокращению, то почему бы не следовать (не учитывать) этой тенденции и в своих действиях (планах выпуска). Возможно, поэтому в такой адаптивной модели и было получено статистически значимое влияние на планы выпуска точностей предыдущих прогнозов "нежеланных" показателей. С другими индикаторами (платежеспособный спрос и выпуск) ситуация иная. Объемы этих показателей (продаж и производства) до сих пор считаются в российской промышленности недостаточными. Об этом явно свидетельствуют оценки предприятиями объемов платежеспособного спроса и производства по шкале "выше нормы", "нормальный", "ниже нормы" (см. рис.5).

Рис.5

В промышленности всегда и устойчиво преобладали ответы "ниже нормы" при оценке этих показателей. Промышленный рост 1999-2001 гг. не внес принципиальных изменений в соотношение оценок. Конечно, сейчас стало больше ответов "нормальный". В целом по промышленности доля таких ответов составляет 40%. Но остальные (т.е. большинство) считают и спрос, и выпуск недостаточными. По этой же причине, вероятно, прогнозы предприятий выпуска и продаж всегда оптимистичнее фактических изменений этих показателей. В такой ситуации корректировать свои очередные планы выпуска с учетом отклонений факта от предыдущих планов российским предприятиям сложно. Желаемое все еще довлеет над действительным.

Продолжим исследование адаптивных моделей формирования производственных планов с использованием точностей реализации предыдущих планов относительно фактических изменений основных видов спроса: платежеспособного, бартерного и прочих неденежных. Сначала рассмотрим модель, в которой очередные прогнозы выпуска определяются только точностью относительно платежеспособного спроса:

Q*t = f( Ф(Dt, Q*t-1) ),

где Q*t - ожидаемые изменения производства, зарегистрированные в момент (опрос) t; Dt - фактические изменения платежеспособного спроса, зарегистрированные в момент (опрос) t; Q*t-1 - планы изменения выпуска, зарегистрированные в момент (опрос) t-1, Ф(Dt, Q*t-1) - точность реализации ожидаемых изменений производства Q*t-1 относительно фактических изменений платежеспособного спроса Dt. Такая модель имела приемлемое, но не стабильное качество подгонки в 1993-1996 гг., затем наблюдаемый уровень значимости стал все реже превышать 5% порог (как правило, не более 4 раз в год) и не слишком сильно. Коэффициент модели, оценивающий линейную связь рангов, всегда был отрицательным, а статистически значимым - с конца 1995 г. Таким образом, предположение о том, что предприятия учитывают отклонения своих предыдущих планов выпуска от фактических изменений спроса пока не получило статистических аргументов.

Аналогичные результаты получены при тестировании модели с включением только точности планов выпуска относительно фактических изменений бартерного спроса. Такая модель в течение всего периода наблюдения за динамикой бартера (1998-2001 гг.) не подходит для описания формирования производственных планов предприятий. Наблюдаемый уровень значимости был нулевым. А коэффициенты модели - значимо отрицательными.

Почти столь же неподходящей была и адаптивная модель, использующая в качестве независимой переменной точность планов выпуска относительно динамики прочих видов спроса. Она имела приемлемое качество подгонки лишь в конце 2000 г. - начале 2001 г. и всегда - отрицательные коэффициенты, которые были статистически значимы.

Адаптивная модель с использованием точностей реализации предыдущих планов выпуска относительно всех трех видов спроса

Q*t = f( Ф(Dt, Q*t-1), Ф(Bt, Q*t-1), Ф(Nt, Q*t-1) )

не обеспечила хорошее качество подгонки (наблюдаемый уровень значимости был нулевым), но имела "желаемые" - для нормальной экономики - коэффициенты. Они были положительны и в половине случаев статистически значимы для точности платежеспособного спроса; отрицательны и редко значимы - для неденежных видов спроса (бартер, векселя, зачеты). Иными словами, при выработке следующих планов выпуска российские предприятия скорее учитывают отклонения предыдущих планов от платежеспособного спроса, чем от неденежных видов спроса.

Добавление в предыдущую модель точности планов выпуска относительно последующих фактических изменений производства позволило несколько улучшить качество подгонки модели (см. табл.9). Положительные коэффициенты имела лишь новая независимая переменная - точность предыдущих планов выпуска. Эти коэффициенты были и статистически значимы в течение всего периода наблюдения. Влияние точности относительно платежеспособного спроса стало положительным лишь в половине случаев и еще реже - статистически значимым. Больше положительных коэффициентов появилось у точности относительно бартерного спроса, но статистически значимых стало меньше. Точность относительно прочих неденежных видов спроса сохранила отрицательные коэффициенты, среди которых стало больше статистически значимых.