Наоборот, в инфильтрационных системах наиболее активная геохимическая жизнь сосредоточивается именно в относительно проницаемых пластахколлекторах. Сюда внедряются вследствие подъема смежных площадей вадозные поверхностные воды, здесь в результате взаимодействия инфильтрационных вод и вмещающих пород осуществляются сложные геохимические преобразования твердой и жидкой фаз, здесь формируется эпигенетическая зональность отложений, преобразуются скопления нефти и газов, создаются и исчезают разнообразные рудные скопления. Глины в области активных геохимических процессов приповерхностной зоны являются более пассивными и как бы меняются ролями с более проницаемыми песчаниками и карбонатными породами.
В целом последовательность формирования термальных газоводных растворов в элизионных системах осадочно-породных бассейнов можно представить в следующем виде.
В зоне диагенеза и в верхней зоне катагенеза, от поверхности осадка на дне палеоводоѐма и до глубины 2 км, в составе газовой фазы будут повсеместно преобладать СО2 и Н2S, возможно присутствие газообразных углеводородов. В илах оба газа имеют биохимическое происхождение, но ниже все большую роль начинают играть абиогенные СО2 и Н2 S, причем к нижней границе зоны в районах, где глинистая покрышка недостаточно проницаема, доминирует СО2, возникшая за счет рассеянных карбонатов. В жидкой фазе отжимаются Н2О и битумоиды. Термобарические параметры, в которых формируются газоводные растворы этой зоны, достигают 100-120С и 420-500 атм. В породах-
коллекторах, а также зонах повышенной трещиноватости из растворов осаждаются сульфиды и карбонаты.
При большем погружении нефтематеринских толщ на глубины от 2 до 4 км, ведущим процессом становится отторжение из РОВ жидкой нефти, растворенных в воде углеводородов, газообразных углеводородов. Область, в которой реализуются процессы формирования битумно-нефтяных скоплений, ограничивают температуры от 120 до 200С и давлении от 500 до 1000 атм. Главным геохимическим процессом является эмиграция углеводородов в пластыколлекторы и разломы и формирование в них залежей нефти и газа.
На глубинах от 4 до 5 км протекают процессы гидрослюдизации глин и дегидратации. Примерно в этом же интервале из РОВ формируются газообразные углеводороды, а также СО2 и Н2S. Эта стадия осуществляется при темпера-
турах 200-250С и давлениях 1000-1200 атм.
Наконец, на глубинах 5-7 км пласты сильно преобразованных и измененных глин вновь становятся поставщиками СО2, Н2S, SiО2 , отчасти газообразных углеводородов.
Приведенная выше зональность генерации газоводных растворов в осадочно-породных бассейнах элизионной группы не имеет четкой глубинной привязки; мощность различных зон находится в тесной связи с термической характеристикой конкретных регионов и плотностью пород, слагающих их разрезы. Интенсивность тех или иных преобразований, а иногда и их глубина зависят также от проницаемости глинистых покрышек, от первичного литологофациального состава осадочных пород. Так, формирование преимущественно монтмориллонитовых глин на катагенетической стадии порообразования будет стимулировать интенсивные процессы дегидратации; присутствие в разрезе глин, содержащих рассеянные карбонаты или сульфиды, будет способствовать интенсивному развитию углекисло-сероводородных явлений. Генерации разнообразных газов способствует преобразования органического вещества. Если в разрезах присутствуют горючие сланцы и породы, обогащенные седиментогенным органическим веществом в количестве Сорг 1 %, то при их катагенезе на глубинах от 2 до 6 км согласно представлениям многих геологов генерируется нефть и газ. Такие отложения называют нефтематеринскими.
Формирование термальных растворов в ряде случаев может привести к мобилизации рудных компонентов из вмещающих глинистых пород и переотложению в пласты-коллекторы и зоны повышенной трещиноватости. Этот механизм особенно типичен для тех компонентов, которые растворяются при избытке СО2 или Н2О и выпадают из растворов при их дефиците. Такими элементами являются, например, Fe и Mn; первый легко мигрирует в виде бикарбоната двухвалентного железа и осаждается при потере СО2, тогда как второй хорошо растворим в сероводородной обстановке.
Минерализованные воды и рассолы натриевого и кальциевого типов, относящиеся к захороненным вместе с осадками седиментационным морским водам, могут нагреваться в платформенных областях до 150-200С. Они являются хорошими растворителями для многих элементов (Fe, Mn, Ni, Cu, Pb, Zn, Sr, Li, Cs, Au, Ag и др.). Металлоносные хлоридные термальные рассолы встречаются в современных артезианских бассейнах на глубинах 3-5 км и по составу могут соответствовать вулканогенным гидротермальным растворам.
В случае накопления больших масс монтмориллонитовых глин в аридных условиях и в континентальной окислительной обстановке, высвобождающиеся растворы могли быть окислительными (по ряду элементов, в частности меди), пресными и гидрокарбонатными. Такие воды должны были опреснять минерализованные захороненные воды, что способствовало растворению и переносу ряда микроэлементов (J, B, Br, F, As, U, Sb и Hg).
В зонах глубокого катагенеза и газонефтеобразования могли формироваться рассолы, обогащенные металлоорганическими соединениями. Так например, известны хорошо растворимые уран- и золотогуминовые комплексы, металл-хелатные, углеводородно-газортутные соединения и др. В местах интенсивного окисления, перепада рН, снижения давления и температуры они могут распадаться и формировать битумно-металлическое оруденение. Широко известны урано-битумные руды, ванадиеносные битумы, золотосодержащее керогеноподобное органическое вещество. В битумах отмечены концентрации U, Mo, V, Cr, Hg, Se, Pb, As, Cu, Ni, TR, крупные скопления галенита, сфалерита, марказита и киновари.
Вопрос 5. Примеры месторождений. Месторождения, связанные сгрунтовыми водами. С деятельностью грунтовых вод связывают образование месторождений меди, редких земель, урана, легированных железных руд, марганца, бокситов, каолина, магнезита, талька, малахита, бирюзы, хризопраза и других полезных ископаемых. Во многих учебниках эти месторождения рассматриваются как переотложенные и вместе с инфильтрационными включены в группу кор выветривания. Главными факторами такого рудообразования являются: наличие крупных источников полезных компонентов в области питания грунтовых вод, развитие жаркого гумидного климата, а предрудный этап, с которым связано интенсивное химическое выветривание и поступление больших масс полезных компонентов в грунтовые воды, медленные положительные конседиментационные движения крупных стабильных блоков земной коры, определявших постоянное понижение уровня грунтовых вод; значительный объем грунтовых вод, большая протяженность и высокая контрастность геохимически барьерных условий.
Примером крупномасштабного осадочно-диагенетического рудообразованиямогут служить медные рудные тела Удоканского месторождения, локализованные в раннепротерозойской молассоидной толще. Здесь согласные с вмещающими осадочными горизонтами рудные тела, повторяют размещение рукавов подводной дельты и располагаются в заливно-лагунных отложениях.
Осадочно-катагенетические месторождения.В качестве примера можно привести месторождения углеводородов (нефтегазоносные бассейны:ВолгоУральский, Днепрово-Донецкий, Северо-Каспийский, Западно-Сибирский, Ферганский, Азово-Кубанский, Сахалинский и др.), Джесказганское месторождение медистых песчаников (Казахстан), полиметаллические руды Мирлимсайского месторождения (Казахстан) и рудного района Миссури (США), сидеритовые руды Бакальской группы и Саткинское магнезитовое месторождение (Ю. Урал), золоторудное месторождение Кумтор (Киргизия), месторождения самородной серы, барита (в Уральской и Новоземельской провинциях).
Осадочно-катагенетические элизионные и инфильтрационные месторождения имеют важное промышленное значение. Этому способствует их большеобъемность, простая морфология рудных тел (пласты, линзы), часто небольшая глубина залегания. Эти месторождения имеют определяющее экономическое значение в энергетике и водоснабжении. Помимо этого более половины мировых запасов свинца и около 40 % цинка, связывается с осадочнокатагенетическическим генезисом. Инфильтрационные месторождения урана составляют около 50 % мировых запасов.
Несмотря на многие дискуссионные аспекты их генезиса, для большинства исследователей очевидно, что при формировании данного типа месторождений используется собственный потенциал осадочно-породного бассейна – флюидный, вещественный и энергетический. Литература: [6], с.4-16.
Дополнительная литература к проблемной лекции
Анфимов Л.В. Литогенез в рифейских осадочных толщах Башкирского мегантиклинория (Ю. Урал). Екатеринбург: Изд-во УО РАН. 1997. С.174-274.
Вассоевич Н.Б. Теория осадочно-миграционного происхождения нефти (исторический обзор и современное состояние) // Изв. АН СССР. Сер. геол. 1967. № 11. С. 135-156.
Хаин В.Е., Соколов Б.А. Роль флюидодинамики в развитии нефтегазоносных бассейнов // Вестник МГУ. Сер. геол. 1994. № 5. С. 3 –12.