Смекни!
smekni.com

Месторождения полезных ископаемых 2 (стр. 8 из 22)

Гидротермальная гипотеза. На всех карбонатитовых месторождениях имеются признаки гидротермально-метасоматического происхождения карбонатов:

а) постепенные переходы от карбонатов к замещаемым породам, наличие

типичных гидротермальных прожилков;

б) температуры образования карбонатных минералов бывают более низ-

кими, чем в магматических образованиях (от 600 до 200С);

в) зависимость состава темноцветных и акцессорных минералов от соста-

ва замещаемых силикатных пород.

Так, Л.Бородин полагает, что все карбонатиты метасоматические. И только ультраосновные породы в карбонатитовых массивах имеют интрузивную природу. Щелочные разности пород образуются за счет нефелинизации пироксенитов.

Комплексная гипотеза. Карбонатиты имеют комбинированное происхождение, их образование начинается на магматическом этапе и продолжается на гидротермальном. Каждый этап включает несколько стадий, связанных с последовательным внедрением порций магматических расплавов: ультраосновного, щелочного, карбонатного, а также различных по составу и температурам порций гидротермальных растворов. Внедрение расплавов и растворов осуществляется по цилиндрическим, коническим, радиальным трещинам в остывающем многофазовом интрузиве.

Вопрос 3.Форма карбонатитовых тел, зональность карбонатитовых массивов. Залежи карбонатитов образуют штоки, конические дайки, падающие к центру массива, кольцевые дайки, падающие в противоположную сторону, радиальные дайки. Трубообразные карбонатитоносные интрузии ультраосновного – щелочного состава в плане характеризуются концентрически зональным строением за счет многофазового внедрения магмы. Причем зональность может быть различна. Так, на Ковдорском массиве от периферии к центру наблюдаются дуниты-перидотиты, щелочные породы, ореолы метасоматических пород – фенитов, карбонатиты. На Кондерском массиве зональность обратная – в центре ультраосновные породы, на периферии щелочные породы и карбонатиты.

Вопрос 4. Примеры месторождений (апатит-магнетитовых, флогопитовых, медных). Карбонатиты имеют важное промышленное значение. С ними связаны основные ресурсы тантала, ниобия, редких земель, существенные запасы титана, железных руд, флюорита, флогопита, апатита и др.

Полезные ископаемые карбонатитового генезиса можно представить в виде обобщенной модели, где определенный тип полезного ископаемого соответствует разной глубине формирования в трубообразном магматическом теле. На глубине 3-6 км от поверхности формируются железо, ниобий, фосфор. В средней зоне (3-2,5 км) – ниобий, тантал, редкие земли, церий, селен, фосфор, железо, флогопит. В верхней зоне из постмагматических (посткарбонатитовых) растворов образуются флюорит, барит, стронцианит. И в приповерхностной зоне накапливаются торий, редкие земли.

Главными типами промышленных месторождений являются следующие:

1) апатит-магнетитовые карбонатиты на Кольском полуострове (Ковдорское), в Африке, Канаде, Бразилии; запасы железной руды достигают сотен миллионов тонн при содержании железа от 20 до 70%; запасы апатита сопоставимы по масштабам при содержании P2O5 10 – 15 %;

2) флогопитовые карбонатиты, образованные на контакте железомагнезиальных пород со щелочными и представленные крупными зонами слюд, флогопитовыми жилами и прожилками, неравномерной вкрапленностью; качество слюды невысокое, содержание еѐ от десятков и сотен килограммов в кубическом метре до сплошных слюдяных масс (Ковдорское месторождение); в коре выветривания по флогопитам на Ковдорском месторождении образовываются богатые залежи вермикулитовых руд;

3) карбонатиты с медными рудами - месторождение Палабора (ЮАР) с запасами меди 1,5 млн. т; массив ультраосновных - щелочных пород представлен трубообразным телом в диаметре 0,5-0,7 км; центральная часть – карбонатиты, периферическая – магнетит-апатитовые руды; в карбонатитах – вкрапленники борнита, халькопирита

Литература: [1], с.66-77; [2], с. 103-108

Проектные задания студентам по самостоятельной работе

Проанализировать сильные и слабые стороны различных генетических гипотез формирования карбонатитовых месторождений. Дать характеристику строения и практической ценности карбонатитов.

Вопросы для самоконтроля знаний:

1. Из каких минералов состоят карбонатиты?

2. С какими комплексами магматических пород связаны карбонатиты?

3. В каких геологических обстановках образуются карбонатиты?

4. Какое строение имеют карбонатитовые массивы?

5. При каких температурах формируются карбонатиты?

6. В чем заключается магматическая гипотеза образования карбонатитов?

7. Какие данные свидетельствуют о гидротермально-метасоматическом происхождении карбонатитов?

8. Привести пример полезных ископаемых карбонатитового генезиса. Литература: [1], с.66 – 77; [3], с. 12 - 13

Лекция 7 (2 часа). Пегматитовые месторождения

Общая характеристика. Формы пегматитовых тел, возраст, глубины и физико-химические условия формирования. Генетические гипотезы образования пегматитов. Полезные ископаемые пегматитовых месторождений.

Вопрос 1. Общая характеристика пегматитов. Пегматитами называются своеобразные по минеральному составу, структурам и генезису минеральные образования, которые сложены агрегатами крупных кристаллов, относящихся к алюмосиликатам. Наиболее характерными полезными ископаемыми пегматитов являются Li, Be, Ta, Cs, Nb, Th, Sn, U, слюды керамическое сырье, пьезооптическое сырье, драгоценные камни.

По генезису выделяется две разновидности пегматитов: магматические и метаморфогенные.

Магматические пегматиты пространственно и генетически связаны с материнскими интрузиями и представляют собой позднемагматические тела, формирующиеся на завершающих стадиях глубинных массивов. Они занимают промежуточное положение между интрузивными породами и постмагматическими рудными жилами. Пегматиты располагаются внутри материнских интрузий или в непосредственной близости от них. Они характеризуются тождественностью состава с этими породами, но отличаются от них меньшими размерами, формой (жилы, гнезда), неравномерной крупно- и гигантозернистой структурой, большим количеством минералов, содержащих летучие компоненты, минерализаторы. Пегматиты могут встречаться в магматических породах любого состава. Но подавляющее количество месторождений приурочено к пегматитам в гранитоидных или щелочных магматических комплексах. Такие комплексы формируются в земной коре на глубинах более 3 км в коллизионных обстановках, в зонах тектоно-магматической активизации континентов.

Основными минералами гранитных пегматитов являются: кварц, калиевый полевой шпат, биотит, мусковит; могут присутствовать топаз, касситерит, берилл, флюорит, сподумен, турмалин, апатит, торий, редкие и радиоактивные элементы.

Пегматиты в щелочных формациях состоят из микроклина или ортоклаза, нефелина, эгирина, арфедсонита, эвдиалита, апатита, содержат цирконий, ниобий, тантал, серий, лантан, редкие земли.

Метаморфогенные пегматиты приурочены к метаморфическим комплексам пород и образуются за счет метаморфических преобразований пород. Они локализованы преимущественно в древних (докембрийских) гранитогнейсовых формациях. Их минеральный состав соответствуют определенной метаморфической фации. В обстановке дистен-силлиманитовой фации - мусковитовые пегматиты; андалузит-силлиманитовой – сложные редкометальные пегматиты (например, сподуменовые, т.е. литиевые).

Вопрос 2. Формы пегматитовых тел, возраст, глубины и термобарические условия формирования. По форме пегматитовые тела представлены жилами, реже линзами, гнездами, трубами. Например, на Мамском месторождении мусковита (в Забайкалье) пегматитовые жилы имеют протяженность до 200 м, мощность до 50 м. Встречаются в природе пегматитовые жилы и больших размеров (например, в Заире - до 5 км длиной и 400 м мощности). Плитообразные жильные тела литиевых (сподуменовых) пегматитов в Афганистане по падению прослежены на 600 м и до конца не вскрыты на глубину.

Геологический возраст пегматитов разнообразен – от архея до мезозоя. Но преобладают все же докембрийские пегматиты. Например, архейский возраст имеют пегматиты Анабарского щита, протерозойский – пегматиты Украинского кристаллического массива, Кольского полуострова. К юным эпохам количество полезных ископаемых в пегматитах уменьшается. Например, месторождения бериллия в докембрийских пегматитах составляют – 75 % от их общего количества, в палеозойских – 23 %, а в мезозойских – 2 %.

Физико-химические условия формирования Глубина формирования пегматитов – от 1,5-2 до 16-20 км. В приповерхностной зоне пегматиты не образуются. Температуры кристаллизации минералов пегматитов от 800-700С (биотит, ранний кварц) до 50С (халцедон). Процесс формирования магматогенных пегматитов начинается с отдаления остаточного магматического расплава, обогащенного летучими компонентами (H2O, CO2, F, Cl и др.). Нормальный гранит застывает при температурах ниже 1000С до800С, а в присутствии минерализаторов эти температуры могут снижаться до 730-640С.

Вопрос 3. Генетические гипотезы образования пегматитов. Несмотря на высокую промышленную ценность пегматитов, до сих пор остаются нерешенными многие генетические вопросы. Это объясняется множеством их типов, сложностью строения, неоднородности состава разных пегматитов, что свидетельствует о формировании пегматитов в широком диапазоне физикохимических и геологических условий. Геологические гипотезы расходятся по следующим пунктам: роль магматического расплава и метасоматоза, источник преобразующих растворов, степень замкнутости системы и растворимость летучих компонентов (прежде всего H2O) в расплаве. Можно выделить 4 основные гипотезы.