Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
«Томский политехнический университет»
Методические указания для самостоятельной работы
Бурение нефтяных и газовых скважин
Томск 2005
Содержание и структура курсовой работы по бурению нефтяных и газовых скважин
Курсовая работа представляет решение конкретных задач сооружения скважин на нефть и газ.
Курсовая работа составляется с использованием данных изучения керна, материалов геофизических исследований скважин, данных их эксплуатации. Привлекаются фондовые и опубликованные материалы. Курсовой проект разрешается представлять в рукописном виде или в компьютерном наборе текста. Работа должна включать в указанной ниже последовательности:
титульный лист (приложение 1);
задание (краткая аннотация 0,5 стр.);
содержание;
введение (1 – 2 станицы текста);
геологическое строение и нефтегазоносность месторождения (3 – 4 страницы текста);
промыслово-геологическое изучение рассматриваемого объекта (8 – 13 страниц текста);
специальная часть проекта (10 – 16 страниц текста);
заключение (4 – 5 страниц текста);
список использованной литературы (приложение 2);
список графических приложений и таблиц с указанием их номеров и страниц;
приложения (рисунки, чертежи, графики и т.д.)
Таким образом, общий объем курсового проекта должен составлять 30 – 40 страниц текста.
Разделы «введение», «геологическое строение и нефтегазоносность» обычно составляются по литературным и фондовым материалам.
Разделы «промыслово-геологическое изучение», «спец. часть» и «заключение» составляются на основе первичных и фондовых материалов собранных в организации, где проходилась практика (для студентов очной формы обучения).
Защита курсового проекта проходит в форме доклада. Иллюстрационный материал к докладу представляется или на ватмане или в виде презентации, созданной в программе Power Point.
Ниже даются пояснения по каждому из разделов курсового проекта.
Введение
Во введении кратко излагаются следующие сведения:
-обоснование выбора объекта исследования;
-актуальность темы проекта; связь темы проекта с задачами, решаемыми предприятием (организацией);
-методы, применяемые при решении курсового проекта;
-использование вычислительной техники при выполнении проекта;
-объем и содержание материалов, использованных при выполнении курсового проекта.
Введение и заключение не нумеруются.
Часть №1. Разработка конструкции скважины
Конструкцию скважины характеризуют следующие параметры:
— число обсадных колонн;
— глубина спуска обсадных колонн;
— интервалы затрубного цементирования;
— диаметры обсадных колонн;
— диаметры ствола скважины под обсадные колонны.
Общая методика
Общая методика разработки конструкции скважины сводится к следующему:
1. Исходя из заданных геологических условий определяется необходимое число обсадных колонн.
2. Для каждой колонны в соответствии с назначением определяется глубина спуска и интервал затрубного цементирования (следует помнить, что в газовых скважинах затрубное пространство цементируется до устья, а в нефтяных основные колонны цементируются с перекрытием предыдущих не менее 300 м.).
3. Выбирается диаметр эксплуатационной колонны по предполагаемому дебиту полезного ископаемого (табл. 1).
Таблица 1
Рекомендуемые диаметры эксплуатационных колонн (мм) при ожидаемом дебите | |||||||
нефти, м3/сут. | газа, тыс.м3/сут. | ||||||
до 100 | до150 | до 300 | более 300 | до 250 | до 500 | до 1000 | до 5000 |
127-140 | 140-146 | 168-178 | 178-194 | 114-146 | 146-168 | 178-219 | 219--273 |
4. Определяется диаметр муфт dм.э. и радиальный зазор δэ.(между муфтой и стенкой скважины) для эксплуатационной колонны (табл. 2).
Таблица 2.
Наружный диаметр, мм | Величина радиального зазора, мм | |
обсадных труб | муфт | |
140; 146; 168178; 194219; 245273; 299324; 340; 351 | 159; 166; 188198; 216245; 270299; 324351; 365; 376 | 10-1515-2020-2525-3030-40 |
5. Рассчитывается необходимый минимальный диаметр ствола скважины в интервале эксплуатационной колонны из выражения (1).
6. По рассчитанному диаметру скважины подбирается диаметр долота для бурения ствола под эксплуатационную колонну dд.э. (190,5; 215,9; 244,5; 269,6; 295,3; 320; 346; 370; 394; 445; 490).
7. Рассчитывается необходимый внутренний диаметр технической колонны dвн.т. по формуле (2) и подбирается наружный диаметр технической колонны (табл. 3).
Таблица 3. Значение внутренних диаметров (мм)
Значение внутренних диаметров (мм)Для обсадных труб с различной толщиной стенок | ||||||||||||||
Толщина стенок,мм | Наружный диаметр, мм | |||||||||||||
116 | 168 | 178 | 194 | 219 | 245 | 273 | 299 | 324 | 340 | 351 | 377 | 407 | 426 | |
66; 5789101112 | -133132130128126124- | -155154152150148146144 | --146162160158156154 | --180178176174-170 | --205203201199-195 | --231229227225-221 | --259257255253-249 | ---283281279277275 | ---306304302300 | ----322320318316 | ----333331329327 | ----359357355353 | ----389387385383 | -----406404402 |
8. Определяется необходимый диаметр скважины dс.т. и диаметр долота dд.т. для бурения ствола под техническую колонну точно также, как и под эксплуатационную (пункты 4, 5, 6).
9. Аналогично находятся диаметры предыдущих обсадных колонн и долот.
10. Все полученные данные о конструкции скважины сводятся в табл.
Часть №2. Разработка режима бурения скважины
1. Расчет осевой нагрузки на долото
Осевая нагрузка на долото, как режимный параметр бурения, обеспечивает внедрение породоразрушающих элементов в горную породу.
В практике бурения для приближенного расчета осевой нагрузки используется выражение
(1)
где q – удельная нагрузка на 1 см диаметр долота для соответствующих пород, кгс/см;
dд – диаметр долота, см.
Значения удельных нагрузок для пород различной категории по буримости приведены в табл. 1.
Таблица 1.
Категория по буримости | Удельная нагрузка, кгс/см |
Мягкие (М)Средней мягкости (С)Твердые (Т)Крепкие (К)Очень крепкие (ОК) | 200-600600-10001000-14001400-16001600-1800 |
Расчетное значение осевой нагрузки в любом случае не должно превышать 80 % от предельно допустимой нагрузки Рдоп. на долото, указанной в табл. 2.
Таблица 2.
Диаметр долота, мм | Предельная нагрузка Рдоп., Тс |
190,5215,3244,5269,9295,3-490 | 2226303240 |
Тип опор долота | Предельная частота оборотов, об/мин |
В | 70 |
Н (НУ) | 400 |
А (АУ) | 600 |
2. Расчет частоты оборотов долота
Частота оборотов, как режимный параметр обеспечивает темпы углубления забоя в единицу времени.
Для приближенного расчета частоты оборотов используется выражение
(2)или (3)
или (3)гле n - частота оборотов долота, об/мин;
Vл – рекомендуемая линейная скорость на периферии долота, м/с;
dд – диаметр долота, м;
π=3,14.
Значения рекомендуемой линейной скорости Vл для пород различной категории приведены в табл. 3.
Таблица 3.
Категория по буримости | Линейная скорость, м/с |
М; МЗМС; МСЗС; СЗСТ; ТТЗ; ТКТКЗ; КОК | 3,4-2,82,8-1,81,8-1,31,3-1,11,1-1,01,0-0,80,8 и менее |
Расчетное значение частоты оборотов не должно превышать 80 % от допустимой частоты вращения долота nдоп, указанной в табл. 2.
(4)
По результатам расчета осевой нагрузки и частоты оборотов определяется типоразмер и конструкция шарошечного долота. Например, 215,3 МСЗ-ГВ (Г- боковая схема промывки рекомендуется при бурении пород мягких (М) и средней твердости (С), для пород твердых (Т) и крепких (К,ОК) рекомендуется использование центральной схемы промывки (индекс Ц или не указывается).
3. Расчет расхода промывочной жидкости
Промывочная жидкость должна обеспечивать очистку забоя скважины от шлама и транспортировку его на поверхность. Интенсивность промывки (расход жидкости) оценивается объемом жидкости прокачиваемой через скважину в единицу времени и измеряется, как правило, в л/с. Практикой установлено, что расход промывочной жидкости, при котором происходит удовлетворительная очистка забоя скважины, составляет в среднем 0,05 – 0,065 л/с на 1 см2 площади забоя скважины при минимальном значении 0,03 – 0,04 л/с.
Исходя из этого расход промывочной жидкости определяется из выражения
(5)где К – коэффициент удельного расхода, равный 0,03 – 0,065 л/с на 1 см2 площади забоя;
Sз – площадь забоя (см2), определяемая как
где dд – диаметр долота в см.
Вынос продуктов разрушения по затрубному кольцевому пространству обеспечивается при скоростях восходящего потока, превышающих скорость падения частиц в неподвижной жидкости. Значение скоростей восходящего потока промывочной жидкости Vвосх. рекомендуется от 0,5 – 0,8 м/с до 1,5 – 1,8 м/с. Большие значения рекомендуется применять для более мягких пород.