Смекни!
smekni.com

Математические методы исследования экономики (стр. 11 из 12)


РЕЗЕРВ:НАЧАЛЬНЫЙ И КОНЕЧНЫЙ.

Каждая операция проекта должна быть завершена в пределах от момента раннего начала до момента позднего окончания. Если все операции заканчиваются в этих пределах, то проект будет окончен вовремя. Когда промежуток времени между этими двумя пределами превышает длительность операций, тогда имеется свободное время, либо до начала , либо после окончания операции. Это свободное время называют резервом. Промежуток времени между поздним окончанем операции и ее ранним началом называется начальным резервом, а промежуток времени между поздним окончанием операции и ее ранним окончанием называется конечным резервом, то есть:

НАЧАЛЬНЫЙ РЕЗЕРВ= ПОЗДНЕЕ НАЧАЛО-РАННЕЕ НАЧАЛО

КОНЕЧНЫЙ РЕЗЕРВ= ПОЗДНЕЕ ОКОНЧАНИЕ-РАННЕЕ ОКОНЧАНИЕ

Начальный резерв времени для операции равен конечному.

РЕЗЕРВ:ПОЛНЫЙ.

НАИБОЛЕЕ ЗНАЧИМЫМ ИЗ ВСЕХ РЕЗЕРВОВ ЯВЛЯЕТСЯ ПОЛНЫЙ РЕЗЕРВ.

Он указывает количество времени, на которое может быть увеличена продолжительность операции без угрозы срыва планового срока завершения поекта. Поэтому следует отличать задержку, внушающую опасение, от задержки, не представляющей угрозы для срока завершения проекта. Полный резерв определяется как момент позднего окончания операции-момент раннего начала-длительность операции.

СВОБОДНЫЙ И НЕЗАВИСИМЫЙ РЕЗЕРВ.

Свободный резерв FF определяется, как ранний момент Еj последующего события минус ранний момент Eiпредшествующего события минус длительность операции D определяемой этими событиями:

FF=Ej-Ei-D

Свободный резерв используется в основном для выявления операций, выполнение которых может задерживаться без ущерба для полного резерва последующих операций.

Независимый резерв IF определяется обычно как ранний момент последующего события минус длительность операции D, определяемой этими событиями:

IF=Ej-Li-D

Heзависимый резерв позволяет выявить операции, затягивание которых не влияет на полный резерв ни предыдущих, ни последующих операций. Полный резерв(свободный и независимый) подсчитываются и табулируются с использованием моментовначала и окончания операций. Если полный резерв равен нулю, то нулевыми являются также свободный и независимый резервы. Поэтому, когда подсчет приводит к нулевому полному резерву и одновременно ненулевому иному резерву, то это свидетельствует об ошибке в вычислениях.

АНАЛИЗ КРИТИЧЕСКОГО ПУТИ.

Последовательность операций, требующая наибольшего времени для ее завершения определяет наименьшее время за которое может быть выполнен проект. то время называется длительностью выполнения проекта. Указанная последовательность операций, определяющая длительность проекта является очень важной и называеся критическим путем. Критический путь всегда начинается с самого первого события сетевого графика и проходит через весь график, заканчиваясь последним событием. Каждая операция критического пути являетсякритической операцией. Для анализа сетевого графика важно определить все критические операции. Критические операция должна одновременно удовлетворять следующим трем критериям: 1)Ранний и поздний моменты событий для узла i должны быть равными:

Ei=Lj 2)Ранний и поздний моменты событий j равны тоже:

Ei=Lj 3)Длительность операции должна равняться разнице между поздним моментом события j и ранним моментом события i:

Lj-Ei-D=0

Tретье условие означает, что критическая операция не должна иметь резерва. Поэтому полный резерв оказывается полезным инструментом для выявления критической операции. Часто на сетевом графике существует несколько критических путей. Иногда короткие цепи, содержащие критические операции могут отходить от основного критического пути и снова возвращаться к нему. Критические операции должны быть завершены вовремя, иначе сроки выполнения проекта будут сорваны. Некритическими операциями называются лишь те, у которых достаточен размер резерва. Операции с большим резервом являются субкритическими, вообще, чем больше резерв операции, тем менее она критична по отношению с другими. Критические операции должны контролироваться руководителем проекта в первую очередь, ибо задержка любой из них увеличивает длительность проекта. Поскольку критические операции составляют в проекте, как правило, 10-15%, сосредоточение внимания руководства на них вполне реально прежде всего за счет менее важных операций. Важным достоинством метода является возожность концентрировать внимание руководства на наиболее ответственных операциях, что совершенно необходимо в больших, сложных проектах.

Сетевое планирование в условиях неопределенностии

При определении временных параметров сетевого графика до сих пор

предполагалось что время выполнения каждой работы точно известно. Такое предположение в действительности выполняется редко: ведь сетевое планирование обычно применяется для разработки сложных ***** зачастую не имевших в прошлом никаких аналогов. Чаще всего продолжительность работы

по сетевому графику заранее не известна и может принимать лишь одно из ряда своих возможных значений. Другими словоми, продолжительность работы является случайной вееличиной, характеризующейся своим законом распределения, а значит, своими числовыми характеристиками- ожидаемой длительностью и мерой разброса.

Сетевые графики могут иметь детерминированную или стохастическую структуру. Причем следует четко различать отличия между детерменированными и стохастическими структурами. а) Если все операции сетевого графика ии их взаимосвязь четко определены,

то такая структура графика называется детерменнированой. б) Стохастическая структура означает, что все операции включаются в сеть с некоторой вероятностью. То еесть в некоторых в некоторых проектах на отдельных этапах тот или иной комплекс работ зависит от неизвестного заранее результата и его фактическое выполнение может быть предсказано лишь с некоторой вероятностью. Так например, в научно-исследовательских и опытно-крнструкторских разработках заранее не известны не только продолжительности отдельных операций, но и их перечень, а также структура сети.

Расчет параметров и анализ графиков стохастической структуры связан со значительными трудностями, поэтому на практике обычно применяются графики с детерминированной структурой и со случайными временными оценками операций. Такие сети получили название стохастических или вероятностных сетей.

При исследовании вероятностных сетей могут встретиться два случая: 1) Операции не являются новыми, и мы приближенно знаем для каждой изних функцию распределения продолжительности выполнения. 2) Операции являются новыми, малоизученными, и для них функции распределения продолжительностей неизвестны.

В первом случае ожидаемая длительность и мера разброса определяются по известной функции распределения.

Во втором случае применяется метод усреднения. исходными данными для метода усреднения являются вероятностные оценки продолжительности каждой операции:а- минимальная продолжительность (оптимистическая оценка ) операции, б- максимальная продолжиительность (пссимистическая оценка) операциии, m-наиболее вероятная продолжительность операции. Эти оценки времени задаются ответственным исполнителем или группой экспертов.

Статистический анализ, проведенный эмпирико-экспериментадьным путем разработчиками математического аппарата сетевого планирования в условиях неопределенности установить что: a+4m+b Ожидаемая длительность ij операции- Fij= 6

b-a Мера разброса ***= 6

После определения ожидаемых длительностей продолжительностей операций по данной формуле, проводится расчет временных параметров сети, как и в детерминированном случае. Ожидаемую длительность критического пути рассматривают как сумму случайных величин, т. e. работ решающих на *****

(Fкр)= Е F(ij)кр.

(i, j)кр Меру разброса продолжительности критического пути считают равной сумме пути:

d(Ткр)= Е dij(Fij)

(i, j)кр Расчет временных параметров сети по ожидаемым длительностям продолжительностей операций не позволяет строго определить срок завершения комплекса операций. Фактическое отклонение случайных величин Tij от их средних значений Tij может быть как в большыыю так и в меньшую сторону. Поэтому фактическая продолжительность выполнения комплекса операций может быть больше или меньше Ткр(ожидаемой длительности критического пути) В связи с этим большой интерес представляет оценка вероятности завер шения комплекса операций к определенному сроку, которая зависит от меры разброса продолжительности критического пути. При одних значениях величин Tij можт быть один критический путь, при других-другой.