6) Выполнив шаги 2 - 5 для всех сырьевых потоков j, определить столбец для конечного продукта (смеси), (например B, тогда Xb количество конечного продукта). В этот столбец записать следующие коэффициенты:
а) в балансовую строку (EVOLPROD) этого конечного продукта записать +1. 0,
б) в строку, отвечающую ограничению снизу на какое-то свойство конечного продукта, записать коэффициент равный +Pb,
в) в строку, отвечающую ограничению сверху на какое-то свойство конечного продукта, записать коэффициент -Pb,
г) если есть ограничения на потребление конечного продукта, записать +1. 0 в соответствующую строку, отвечающую этому ограничению (либо учесть его просто как ограничение на переменную Xb),
д) ввести в строку целевой функции коэффициент стоимости конечного продукта Cb.
Классификация экономико-математических моделей
Важным этапом изучения явлений предметов процессов является их классификация, выступающая как система соподчиненных классов объектов, используемая как средство для установления связей между этими классами объектов. Основой классификации являются существенные признаки объектов. Поскольку признаков может быть очень много то и выполненные классификации могут значительно отличаться друг от друга. Любая классификация должна преследовать достижение поставленных целей. выбор цели классификации определяет набор тех признаков, по которым будут классифицироваться объекты, подлежащие систематизации. Цель нашей классификации - показать, что задачи оптимизации, совершенно различные по своему содержанию, можно решить на ЭВМ с помощью нескольких типов существующего программного обеспечения.
Классификацию задач оптимизации, возникающих на производстве, выполним по следующим признакам: 1. Область применения 2. Содержание задачи 3. Класс математической модели 1. Обеспечение производства включает в себя : 1. 1 Организацию и управление 1. 2 Проектирование изделий 1. 3 Разработку технологических процессов
Во всех этих элементах производства возникают задачи оптимизации. Так весьма широкий круг самых различных работ можно рассматривать как превращение ресурсов в результат. В связи с этим основные задачи, возникающие при управлении, могут быть отнесены к классу задач распределения ресурсов.
Объект проектирования устройством и действием. Устройство определяется структурой и параметрами. Действие характеризуется процессом функционирования. При решении этих трех вопросов возникают задачи: 1. 2. а Оптимизация параметров объекта проектирования. 1. 2. б Оптимизация структуры объекта проектирования. 1. 2. в Оптимизация функционирования
Технологический процесс определяется последовательностью работ, которые обеспечивают превращение сырья в готовую продукцию. Такую последовательность работ называют маршрутом. Каждая операция, входящая в маршрут характеризуется режимами обработки. Очевидно что задачи, требующие оптимального решения возникают как при выборе маршрута так и при определении параметров операций. 1. 3. а Оптимизация маршрута изготовления изделия 1. 3. б Оптимизация параметров технологических процессов.
Важным признаком классификации является класс математической модели. Проведем классификацию по элментам математической модели: 1 Исходным данным 2 Искомым переменным 3 Зависимостям, описывающим ограничения и целевую функцию
1. 1 Исходные данные, которые заданы определенными величинами называют детерминированными 1. 2 Исходные данные, которые зависят от случайных факторов, например от своевременности поставки ресурсов, исправности оборудования и. т. д. называют случайными величинами.
2. 1 Переменные могут быть непрерывными и дискретными. Непрерывными называют такие величины, которые в заданном интервале могут принимать любые значения. Так масса добываемого угля или объем выпуска ткани представляют собой непрерывные величины. 2. 2 Дискретными называют такитолько целые значения. Так например нельзя выпустить 0. 7 тепловоза или сдать строительный объект из 1. 45 здания.
3. 1 Зависимости межу переменными как в целевой функции так и в ограничениях могут быть линейными и нелинейными. Линейпервой степени и нет их произведения. 3. 2 Если переменые входят не в первой степени или есть произведение переменных, то зависимости являются нелинейными.
Сочетание различных элементов модели приводит к различным классам задач оптимизации. Различные классы задач требуют разных методов решения а сле
Наиболее распространенными задачами оптимизации возникающими в экономике являются задачи линейного программирования. Такая их распространенность объясняется следующим: 1) С их помощью решают задачи распределения ресурсов, к которым сводится очень большое число самых различных задач 2) Разработаны надежные методы их решения, которые реализованы в поставляемом программном обеспечении 3) Ряд более сложных задач сводится к задачам линейного программирования
Математическое моделирование в управлении и планировании
Один из мощных инструментов которым располагают люди, ответственные за управление сложными системами - моделирование. Модель является представлением реального объекта, системы или понятия в некоторой форме, отличной от формы их фактического реального существования. Обычно модель служит средством, помогающим в объяснении, понимании или совершенствованииточной копией этого объекта, выполненной в другом масштабе или из другого материала, или отображать некоторые характерные свойства объекта в абстрактной форме, в частности в виде математических выражений. Анализ математических моделей дает в руки менеджеров и других руководителей эффективный инструмент, который может использоваться для предсказания поведения систем и сравнения получаемых результатов. Моделирование позволяет логическим путем прогнозировать последстия альтернативных действий и достаточно уверенно показывает какому из них следует отдать предпочтение.
Прих суждений и интуиции. Для достижения цели практически всегда существует несколько вариантов из которых нужно выбрать оптимальный. Для определения лучшего варианта пользуются критерием эффективности или целевой функцией.
РУКОВОДСТВО ПРЕДПРИЯТИЕМ
Для достижения поставленной цели предприятию требуются материалы, оборудование, энергия, рабочая сила и другие ресурсы. Каждое предприятие такими ресурсами располагает, но общие запасы ресурсов ограничены. Поэтому возникает важная задача: выбор оптимального варианта, обеспечивающего достижение цели с минимальными затратами ресурсов. Таким образом эффективное руководство производством подразумевает такую организацию процесса, при которой не только достигается цель, но и получается экстремальное (MIN, MAX) значение некоторого критерия эффективности: К = F(X1, X2, . . . , Xn) => MIN(MAX) Функция К является математическим выражением результата действия, направленного на достижение поставленной цели, и поэтому ее называют целевой функцией.
Функционирование сложной производственной системы всегда определяется большим числом параметров. Для получения оптимального решения часть этих параметров нужно обратить в максимум, а другие в минимум. Возникает вопрос: существует ли вообще такое решение, которое наилучшим образом удовлетворяет всем требованиям сразу ? Можно уверенно ответить - нет. На практике решение, при котором какой-либо показатель имеет максимум, как правило, не обращает другие показатели ни в максимум ни в минимум. Поэтому выражения типа: производить продукцию наивысшего качества с наименьшими затратами - это просто торжественная фраза по сути неверная. Правильно было бы сказать: получить продукцию наивысшего качества при той же стоимости, или снизить затраты на производство продукции не снижая ее качества, хотя такие выражения звучат менее красиво, но зато они четко определяют цели. Выбор цели и формулирование критерия ее достижения, то есть целевой функции, представляют собой труднейшую проблему измерения и сравнения мноазнородных переменных, некоторые из которых в принципе несоизмеримы друг с другом: например безопасность и стоимость, или качество и простота. Но именно такие социальные, этические и психологические понятия часто выступают как факторы мотивации при определении цели и критерия оптимальности. В реальных задачах управления производством нужно учитывать то, что некоторые критерии имеют большую важность чем другие. Такие критерии можно ранжировать, то есть устанавливать их относительную значимость и приоритет. В подобных условиях оптимальным приходится считать такое решение, при котором критерии имеющие наибольший приоритет получают максимальные значения. Предельным случаем такого подхода является принцип выделения главного критерия. При этом один какой-то критерий принимается в качестве основного, например прочность стали, калорийность продукта и. т. д. По этому критерию производится оптимизация, к остальным предъявляется только одно условие, чтобы они были не меньше каких-то заданных значений. Между ранжированными параметрами нельзя проводить обычные арифметические операции, возможно лишь установление их иерархии ценностей и шкалы приоритетов, что является существенным отличием от моделирования в естественных науках.
При проектировании сложных техических систем, при управлении крупным производством или руководстве военными действиями, то есть в ситуациях где необпрактический опыт, дающий возможность выделить наиболее существеные факторы, охватить ситуацию в целом и выбрать оптимальный путь для достижения поставленой цели. Опыт помогае также найти аналогичные случаи в прошлом и по возможности избежать ошибочных действий. Под опытом подразумевается е только собственная практика лица, принимающего решение но и чужой опыт, который описан в книгах, обобщен в инструкциях, рекомендациях и других руководящих материалах. Естествено, когда решение уже апробировано, то есть известно какое именно решение наилучшим образом удовлетворяет поставленным целям проблемы оптимального управления не существует. Однако на самом деле практически никогда не бывает совершенно одинаковых ситуаций, поэтому принимать решения и осуществлять управление всегда приходится в условиях неполной информации. В таких случаях недостающую информацию пытаются получить используя догадки, предположения, результаты научных исследований и особенно изучение на моделях. Научно обоснованная теория управления во многом представляет собой набор методов пополнения недостающей информации о том как поведет себя объект управления при выбраном воздействии.