Рассмотрим применение среднего индекса цен на примере.
Пусть имеются данные о продаже товаром в магазине (табл.2.2.)
Таблица 2.2.
Данные о продаже товаров
Товар, ед.изм. | Продано в отчетном периоде p1q1, тыс.руб. | Изменение цен на товары в отчетном периоде по сравнению с базисным, % |
Туфли мужские, пары | 186 | +3 |
Костюмы, шт. | 214 | +6 |
ИТОГО | 400 | - |
Определить общий кодекс цен.
Решение. Запишем, исходя из условия, индивидуальные индексы цен: iⁿp=1,06 и i′p=1,03 и подставим их значения в формулу среднего гармонического индекса цен (2.8):
Ip= | ∑p1q1 | = | 186+214 | = | 400 | = | 1,046 | или | 104,60% | |||
∑ | p1q1 | 186 | + | 214 | 382,47 | |||||||
ip | 1,03 | 1,06 |
Следовательно, в отчетном периоде по сравнению с базисным цены на данную группу товаров повысился в среднем на 4,6% . [3 с.163]
2.4. Базисные и цепные индексы
В ходе экономического анализа изменение индексируемых величин часть изучают не за два, за ряд последовательных периодов. Возникает необходимость построения индексов за ряд этих последовательных периодов.
В зависимости от выбора базы сравнения индексы бывают цепными и базисными.
В системе базисных индексов сравнения уровней индексируемого показателя в каждом индексе производится с уровнем базисного периода, а системе цепных индексов уровни индексируемого показателя сопоставляются с уровнем предыдущего периода.
Цепные и базисные индексы могут быть как индивидуальные, так и общие.
Ряды индивидуальных индексов просты по построению:
· базисные индексы | Ip= | p1 | ; | Ip= | p2 | ; | Ip= | p3 | ; | Ip= | pn | . |
р0 | р0 | р0 | р0 | |||||||||
· цепные индексы | Ip= | p1 | ; | Ip= | p2 | ; | Ip= | p3 | ; | Ip= | pn | . |
р0 | р1 | р2 | pn-1 |
Между цепными и базисными индивидуальными индексами существует взаимосвязь - произведение последовательных цепных индивидуальный индексов дает базисный индекс последнего периода:
Ip= | p1 | * | p2 | * | p3 | * | pn | = | pn |
р0 | р1 | р2 | рn-1 | р0 |
Отношение базисного индекса отчетного периода к базисному индексу предшествующего периода дает цепной индекс отчетного периода:
Ip= | pn | : | рn-1 | = | pn |
р0 | р0 | рn-1 |
Это правило позволяет применять так называемый цепной метод, т.е находить неизвестный ряд базисных индексов по известным цепным, и наоборот.
Рассмотрим построение базисных и цепных индексов на примере агрегатных индексов цен и физического объема продукции. Известно, что если строится ряд индексов, то веса в нем могут быть либо постоянными для всех индексов ряда, либо переменными.
Базисные индексы
Индексы цен Паше (с переменными весами):
IР1/0= | ∑p1q1 | ; | IP2/0= | ∑p2q2 | ; | …; | IPn/0= | ∑pnqn | ; |
∑p0q1 | ∑p0q2 | ∑p0qn |
Индексы цен Ласпейреса (с постоянными весами)
IP1/0= | ∑p1q0 | ; | IP2/0= | ∑p2q0 | ; | …; | IPn/0= | ∑pnq0 | ; |
∑p0q0 | ∑p0q0 | ∑p0q0 |
Индексы физического объема продукции (с постоянными весами):
Iq1/0= | ∑p1q0 | ; | Iq2/0= | ∑p2q0 | ; | …; | Iqn/0= | ∑qnp0 | ; |
∑p0q0 | ∑p0q0 | ∑p0q0 |
Цепные индексы
Индексы цен Паше (с переменными весами):
IР1/0= | ∑p1q1 | ; | IP2/1= | ∑p2q2 | ; | …; | IPn/n-1= | ∑pnqn | ; |
∑p0q1 | ∑p1q2 | ∑pn-1qn |
Индексы цен Ласпейреса (с постоянными весами)
IP1/0= | ∑p1q0 | ; | IP2/1= | ∑p2q0 | ; | …; | IPn/n-1= | ∑pnq0 |
∑p0q0 | ∑p1q0 | ∑pn-1q0 |
Индексы физического объема продукции (с постоянными весами):
Iq1/0= | ∑p1q0 | ; | Iq2/1= | ∑q2p0 | ; | …; | Iqn/n-1= | ∑qnp0 | . |
∑q0p0 | ∑q1p0 | ∑qn-1p0 |
Итак, в базисных агрегатных индексах все отчетные данные сопоставляются только с базисными (закрепленными) данными, а в цепных – с предыдущими (в данном случае – смежными) данными.
Ряды агрегатных индексов с постоянными весами имеют преимущество – сохраняется взаимосвязь между цепными и базисными индексами, например, в ряду агрегатных индексов физического объема:
∑q1p0 | * | ∑q2p0 | * | ∑q3p0 | = | ∑q3p0 |
∑p0q0 | ∑q1p0 | ∑q2p0 | ∑p0q0 |
или в ряду агрегатных индексов цен Ласпейреса:
∑p1q0 | * | ∑p2q0 | * | ∑p3q0 | = | ∑p3q0 |
∑p0q0 | ∑p1q0 | ∑p2q0 | ∑p0q0 |
Таким образом, использование постоянных весов в течение ряда лет позволяет переходить от цепных общих индексов к базисным, и наоборот.
В рядах агрегатных индексов качественных показателей, которые строятся с переменными весами (например, ряд цен Паше), перемножение цепных индексов не дает базисный:
∑p1q1 | * | ∑p2q2 | * | ∑p3q3 | ≠ | ∑p3q1 |
∑p0q1 | ∑p1q2 | ∑p2q3 | ∑p0q1 |
Для таких индексов переход от цепных индексов к базисным, и наоборот невозможен. Но в статистической практике часто возникает необходимость определения динамики цен за длительный период времени на основе цепных индексов или с переменными веса. Тогда для получения приближенного итогового индекса цепные индексы цен перемножают, заведомо зная, что в таком расчете допускается ошибка. Отчетные индексы этого ряда используются для пересчета стоимостных показателей отчетного периода в ценах предыдущего года.
III. Практическая часть
Второй вариант.
ЗАДАЧА I.
Имеются следующие данные о стаже работы и проценты выполнения норм выработки рабочих-сдельщиков за отчетный месяц:
Рабочий, № п/п | Стаж, число лет | Выполнение норм, % | Рабочий, № п/п | Стаж, число лет | Выполнение норм, % |
1 | 1,0 | 96 | 11 | 10,5 | 108 |
2 | 6,5 | 103 | 12 | 9,0 | 107 |
3 | 9,2 | 108 | 13 | 5,0 | 105 |
4 | 4,5 | 103 | 14 | 6,0 | 103 |
5 | 6,0 | 106 | 15 | 10,2 | 109 |
6 | 2,5 | 100 | 16 | 5,4 | 102 |
7 | 2,5 | 101 | 17 | 7,5 | 105 |
8 | 16,0 | 113 | 18 | 8,0 | 106 |
9 | 14,0 | 110 | 19 | 8,5 | 106 |
10 | 12,0 | 109 | 20 | 11,0 | 107 |
Для выявления зависимости между стажем работы и выполнением норм выработки произвести группировку рабочих по стажу, образовав пять групп с равными интервалами.
По каждой группе и совокупности рабочих подсчитайте: 1) число рабочих; 2) средний стаж работы; 3) средний процент выполнения норм выработки.
Результаты оформите в групповой таблице и сделайте выводы.
РЕШЕНИЕ:
В качестве группировочного признака возьмем стаж рабочих. Образуем пять групп рабочих с равными интервалами. Величину интервала определим по формуле:
хmax - xmin 16-1
h= _____________ = _________= 3 число лет
n 5
Обозначим границы групп:
1 – 4 – 1-я группа;
4 – 7 – 2-я группа;
7 – 10 – 3-я группа;
10 – 13 – 4-я группа;
13 – 16 – 5-я группа.
После того, как определен группировочный признак, задано число групп и образованы сами группы, необходимо отобрать показатели, которые характеризуют группы, и определить их величины по каждой группе. Результаты разносим в таблицу 3.1.
Таблица 3.1
№ группы | Группы рабочих по стажу работы | Число рабочих | Средний стаж работы, число лет | Средний процент выполнения норм выработки, % |
1 | 1 – 4 | 3 | 2 | 99 |
2 | 4 – 7 | 6 | 5,6 | 103,7 |
3 | 7 – 10 | 5 | 8,4 | 106,4 |
4 | 10 – 13 | 4 | 10,9 | 108,3 |
5 | 13 – 16 | 2 | 15 | 111,5 |
ИТОГО | 20 |
Вывод.
Таким образом, чем больше стаж работы, тем выше процент выполнения норм выработки.