Смекни!
smekni.com

Анализ динамики импорта и экспорта США (стр. 4 из 6)

полином 3-ей степени:

;

степенная форма:

;

экспоненциальная форма:

, или Yt = aebt

где

- уровень ряда, полученный в результате выравнивания по прямой,

- начальный уровень тренда;

,
,
- константы тренда.

Это только часть тех кривых, которые можно было использовать для выравнивания ряда.

Задача: подобрать для каждого из периодов динамических рядов наилучший тренд, по которому будет спрогнозирован дальнейший результат.

Полученные уравнения трендов сведены в таблицы 2.49 – 2.54 по периодам и динамическим рядам с указанием значений остаточной дисперсии для каждой модели и коэффициента детерминации. Также был произведен выбор наилучших трендов, основанный на минимуме остаточной дисперсии и максимуме коэффициента детерминации.

Рассчитанные показатели представлены ниже.

Для их расчета будут использоваться следующие таблицы по периодам:

1 период:

Рис. 10. Исходные данные


2 период:

Рис. 11. Исходные данные

Где под Т подразумевается время.

Также нам потребуются следующие обозначения, которые используются в ППП Statistica:

в таблице «Результаты расчета параметров линейной модели тренда»

Estimate – числовые значения параметров уравнения;

Standard еrror – стандартная ошибка параметра;

t-value – расчетное значение t-критерия;

df – число степеней свободы (n-2);

p-level – расчетный уровень значимости;

Lo. Conf. Limit и Up. Conf. Limit – соответственно нижняя и верхняя граница доверительных интервалов для параметров уравнения с установленной вероятностью (указана как Level of Confidence в верхнем поле таблицы).

В таблице «Результаты дисперсионного анализа линейной модели тренда»:

В верхней заголовочной строке таблицы выдаются пять оценок:

Sum of Squares – сумма квадратов отклонений;

df – число степеней свободы;

Mean Squares – средний квадрат;

F-value – критерий Фишера;

p-value – расчетный уровень значимости F-критерия.

В левом столбце указывается источник вариации:

Regression – квадраты теоретических (полученных по тренда) значений признака;

Residual – отклонения фактических значений от теоретических (полученных по уравнению тренда);

Total – отклонения фактических значений

от их средней величины.

На пересечении столбцов и строк получаем однозначно определенные показатели:

Regression / Sum of Squares – сумма квадратов прогнозных значений;

Residual / Sum of Squares – сумма квадратов отклонений теоретических и фактических значений

(для расчета остаточной, необъясненной дисперсии);

Total / Sum of Squares – сумма первой и второй строчки (сумма квадратов фактических значений);

Corrected Total / Sum of Squares – сумма квадратов отклонений фактических значений

от средней величины (для расчета общей дисперсии);

Regression vs. Corrected Total / Sum of Squares – повторение первой строчки;

Regression / Mean Squares – сумма квадратов прогнозных значений, деленная на число степеней свободы;

Residual / Mean Squares – остаточная, необъясненная дисперсия;

Regression vs. Corrected Total / Mean Squares – повторение первой строчки;

Regression / F-value – расчетное значение F-критерия.

В таблице «Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда»:

Observed – наблюдаемые значения (то есть уровни исходного динамического ряда);

Predicted – прогнозные значения (полученные по уравнению тренда для данных моментов времени);

Residuals – остатки (разница между фактическими и прогнозными значениями).

1 период:

1.1. Линейная функция

1.1.1. Импорт

Model is: v1=a0+a1*v3

Dependent variable: Импорт Independent variables: 1

Loss function: least squares

Final value: 2860,58754087

Proportion of variance accounted for:,96459517 R =,98213806

Рис. 12. Результаты расчета параметров линейной модели тренда


σ²ост = 357,6

Рис. 13. Результаты дисперсионного анализа линейной модели тренда

Рис. 14. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 15. Исходный динамический ряд и линейный тренд


1.1.2. Экспорт

Model is: v2=a0+a1*v3

Dependent variable: Экспорт Independent variables: 1

Loss function: least squares

Final value: 12239,2987404

Proportion of variance accounted for:,70518264 R =,83975153

Рис. 16. Результаты расчета параметров линейной модели тренда

σ²ост = 1529,9

Рис. 17. Результаты дисперсионного анализа линейной модели тренда


Рис. 18. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 19. Исходный динамический ряд и линейный тренд

2. Полином 2-ой степени

1.2.1. Импорт

Model is: v1=a0+a1*v3+a2*v4

Dependent variable: Импорт Independent variables: 2

Loss function: least squares

Final value: 2361,07651935

Proportion of variance accounted for:,9707775 R =,98528042


Рис. 20. Результаты расчета параметров линейной модели тренда

σ²ост = 337,3

Рис. 21. Результаты дисперсионного анализа линейной модели тренда

Рис. 22. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда


Рис. 23. Исходный динамический ряд и линейный тренд

1.2.2. Экспорт

Model is: v2=a0+a1*v3+a2*v4

Dependent variable: Экспорт Independent variables: 2

Loss function: least squares

Final value: 1182,47466764

Proportion of variance accounted for:,97151683 R =,98565553

Рис. 24. Результаты расчета параметров линейной модели тренда


σ²ост = 168,9

Рис. 25. Результаты дисперсионного анализа линейной модели тренда

Рис. 26. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 27. Исходный динамический ряд и линейный тренд


3. Полином 3-ей степени

1.3.1. Импорт

Model is: v1=a0+a1*v3+a2*v4+a3*v5

Dependent variable: Импорт Independent variables: 3

Loss function: least squares

Final value: 1622,93896749

Proportion of variance accounted for:,97991326 R =,98990568

Рис. 28. Результаты расчета параметров линейной модели тренда

σ²ост = 270,5

Рис. 29 Результаты дисперсионного анализа линейной модели тренда


Рис. 30. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 31Исходный динамический ряд и линейный тренд

1.3.2. Экспорт

Model is: v2=a0+a1*v3+a2*v4+a3*v5

Dependent variable: Экспорт Independent variables: 3

Loss function: least squares

Final value: 1128,49182351

Proportion of variance accounted for:,97281715 R =,98631494


Рис. 32. Результаты расчета параметров линейной модели тренда

σ²ост = 188,1

Рис. 33. Результаты дисперсионного анализа линейной модели тренда

Рис. 34. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда


Рис. 35. Исходный динамический ряд и линейный тренд

4. Экспоненциальная функция

1.4.1. Импорт

Model is: v1=exp(a0+a1*v3)

Dependent variable: Импорт Independent variables: 1