полином 3-ей степени:
;степенная форма:
;экспоненциальная форма:
, или Yt = aebtгде
- уровень ряда, полученный в результате выравнивания по прямой, - начальный уровень тренда; , , - константы тренда.Это только часть тех кривых, которые можно было использовать для выравнивания ряда.
Задача: подобрать для каждого из периодов динамических рядов наилучший тренд, по которому будет спрогнозирован дальнейший результат.
Полученные уравнения трендов сведены в таблицы 2.49 – 2.54 по периодам и динамическим рядам с указанием значений остаточной дисперсии для каждой модели и коэффициента детерминации. Также был произведен выбор наилучших трендов, основанный на минимуме остаточной дисперсии и максимуме коэффициента детерминации.
Рассчитанные показатели представлены ниже.
Для их расчета будут использоваться следующие таблицы по периодам:
1 период:
Рис. 10. Исходные данные
2 период:
Рис. 11. Исходные данные
Где под Т подразумевается время.
Также нам потребуются следующие обозначения, которые используются в ППП Statistica:
в таблице «Результаты расчета параметров линейной модели тренда»
Estimate – числовые значения параметров уравнения;
Standard еrror – стандартная ошибка параметра;
t-value – расчетное значение t-критерия;
df – число степеней свободы (n-2);
p-level – расчетный уровень значимости;
Lo. Conf. Limit и Up. Conf. Limit – соответственно нижняя и верхняя граница доверительных интервалов для параметров уравнения с установленной вероятностью (указана как Level of Confidence в верхнем поле таблицы).
В таблице «Результаты дисперсионного анализа линейной модели тренда»:
В верхней заголовочной строке таблицы выдаются пять оценок:
Sum of Squares – сумма квадратов отклонений;
df – число степеней свободы;
Mean Squares – средний квадрат;
F-value – критерий Фишера;
p-value – расчетный уровень значимости F-критерия.
В левом столбце указывается источник вариации:
Regression – квадраты теоретических (полученных по тренда) значений признака;
Residual – отклонения фактических значений от теоретических (полученных по уравнению тренда);
Total – отклонения фактических значений
от их средней величины.На пересечении столбцов и строк получаем однозначно определенные показатели:
Regression / Sum of Squares – сумма квадратов прогнозных значений;
Residual / Sum of Squares – сумма квадратов отклонений теоретических и фактических значений
(для расчета остаточной, необъясненной дисперсии);Total / Sum of Squares – сумма первой и второй строчки (сумма квадратов фактических значений);
Corrected Total / Sum of Squares – сумма квадратов отклонений фактических значений
от средней величины (для расчета общей дисперсии);Regression vs. Corrected Total / Sum of Squares – повторение первой строчки;
Regression / Mean Squares – сумма квадратов прогнозных значений, деленная на число степеней свободы;
Residual / Mean Squares – остаточная, необъясненная дисперсия;
Regression vs. Corrected Total / Mean Squares – повторение первой строчки;
Regression / F-value – расчетное значение F-критерия.
В таблице «Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда»:
Observed – наблюдаемые значения (то есть уровни исходного динамического ряда);
Predicted – прогнозные значения (полученные по уравнению тренда для данных моментов времени);
Residuals – остатки (разница между фактическими и прогнозными значениями).
1 период:
1.1. Линейная функция
1.1.1. Импорт
Model is: v1=a0+a1*v3
Dependent variable: Импорт Independent variables: 1
Loss function: least squares
Final value: 2860,58754087
Proportion of variance accounted for:,96459517 R =,98213806
Рис. 12. Результаты расчета параметров линейной модели тренда
σ²ост = 357,6
Рис. 13. Результаты дисперсионного анализа линейной модели тренда
Рис. 14. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда
Рис. 15. Исходный динамический ряд и линейный тренд
1.1.2. Экспорт
Model is: v2=a0+a1*v3
Dependent variable: Экспорт Independent variables: 1
Loss function: least squares
Final value: 12239,2987404
Proportion of variance accounted for:,70518264 R =,83975153
Рис. 16. Результаты расчета параметров линейной модели тренда
σ²ост = 1529,9
Рис. 17. Результаты дисперсионного анализа линейной модели тренда
Рис. 18. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда
Рис. 19. Исходный динамический ряд и линейный тренд
2. Полином 2-ой степени
1.2.1. Импорт
Model is: v1=a0+a1*v3+a2*v4
Dependent variable: Импорт Independent variables: 2
Loss function: least squares
Final value: 2361,07651935
Proportion of variance accounted for:,9707775 R =,98528042
Рис. 20. Результаты расчета параметров линейной модели тренда
σ²ост = 337,3
Рис. 21. Результаты дисперсионного анализа линейной модели тренда
Рис. 22. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда
Рис. 23. Исходный динамический ряд и линейный тренд
1.2.2. Экспорт
Model is: v2=a0+a1*v3+a2*v4
Dependent variable: Экспорт Independent variables: 2
Loss function: least squares
Final value: 1182,47466764
Proportion of variance accounted for:,97151683 R =,98565553
Рис. 24. Результаты расчета параметров линейной модели тренда
σ²ост = 168,9
Рис. 25. Результаты дисперсионного анализа линейной модели тренда
Рис. 26. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда
Рис. 27. Исходный динамический ряд и линейный тренд
3. Полином 3-ей степени
1.3.1. Импорт
Model is: v1=a0+a1*v3+a2*v4+a3*v5
Dependent variable: Импорт Independent variables: 3
Loss function: least squares
Final value: 1622,93896749
Proportion of variance accounted for:,97991326 R =,98990568
Рис. 28. Результаты расчета параметров линейной модели тренда
σ²ост = 270,5
Рис. 29 Результаты дисперсионного анализа линейной модели тренда
Рис. 30. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда
Рис. 31Исходный динамический ряд и линейный тренд
1.3.2. Экспорт
Model is: v2=a0+a1*v3+a2*v4+a3*v5
Dependent variable: Экспорт Independent variables: 3
Loss function: least squares
Final value: 1128,49182351
Proportion of variance accounted for:,97281715 R =,98631494
Рис. 32. Результаты расчета параметров линейной модели тренда
σ²ост = 188,1
Рис. 33. Результаты дисперсионного анализа линейной модели тренда
Рис. 34. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда
Рис. 35. Исходный динамический ряд и линейный тренд
4. Экспоненциальная функция
1.4.1. Импорт
Model is: v1=exp(a0+a1*v3)
Dependent variable: Импорт Independent variables: 1