1) вариации доходов по различным ценным бумагам, входящим в портфель;
2) тенденции доходов этих ценных бумаг, которые могут изменяться в одном или разных направлениях.
Для расчета ковариации с использованием фактических (исторических) данных о доходах ценных бумаг используют, следующую формулу:
где COV - ковариация между акцией х и акцией у;
kx-норма дохода по акции х;
ky -норма дохода по акции у;
n - число вариантов (наблюдений).
Если в какой-то момент времени доход на акцию х будет ниже среднего и то же наблюдается в отношении акции у, то значение каждого отклонения будет отрицательным, а их про изведение - положительным. Аналогично, если одна из переменных х или у ниже средней, а другая - выше, то ковариация будет отрицательной.
В общем виде формула для расчета ковариации будет выглядеть следующим образом:
где Pi - вероятность наступления i-гo варианта.
Другим показателем, используемым для анализа портфеля ценных бумаг, является коэффициент корреляции. Корреляцией называется тенденция двух переменных менять свои значения взаимосвязанным образом. Эта тенденция измеряется коэффициентом корреляции r, который может варьироваться от + 1,0 (когда значения двух переменных изменяются абсолютно синхронно, т.е. изменяются в одном и том же направлении) до -1,0 (когда значения переменных изменяются в точно противоположных направлениях). Нулевой коэффициент корреляции показывает, что изменение одной переменной не зависит от изменения другой.
Коэффициент корреляции (rxy) определяется следующим образом:
где
Эффективная диверсификация по Марковицу предусматривает объединение ценных бумаг с коэффициентом корреляции менее единицы без существенного снижения доходности по портфелю. В общем, чем ниже коэффициент корреляции ценных бумаг, входящих в портфель, тем менее рискованным будет портфель. Это справедливо независимо от того, насколько рискованными являются эти ценные бумаги, взятые в отдельности, Т.е. недостаточно инвестировать просто в как можно большее количество ценных бумаг, нужно уметь правильно выбирать эти ценные бумаги. Такая диверсификация в экономической литературе носит название «чудо диверсификации». Например, инвестирование в акции компаний «Форд» и «Нестле» является рациональной диверсификацией, чего нельзя сказать, например, о вложении средств в ценные бумаги «Форд» и «Фольксваген» (одна отрасль). Одновременные инвестиции в акции компаний «Форд» и «Шелл» также нецелесообразны, поскольку продукция таких компаний взаимосвязана.
Анализ реальной ситуации на биржах ведущих стран показывает, что, как правило, большая часть различных групп акций имеет положительный коэффициент корреляции, хотя, конечно, не на уровне r= +1. Например, на Нью-Йоркской фондовой бирже коэффициент корреляции цен двух случайным образом выбранных групп акций составляет от +0,5 до +0,7.
Следовательно, риск по портфелю, состоящему из двух ценных бумаг, может быть определен так:
где
r- коэффициент корреляции между акциями х и у.
Переход от портфеля из двух ценных бумаг к портфелю из двух бумаг предполагает: во-первых, огромный объем необходимых вычислений и в связи с этим важность использования компьютера и созданного Марковицем алгоритма; во-вторых, увеличение объема исходной информации, необходимой для аналитика. Поэтому на практике чаще используется модель, в основу которой положена корреляция доходов отдельного вида инвестиций с некоторым «индексом», а не со всеми остальными объектами инвестирования, взятыми в отдельности, а также модель ценообразования на капитальные активы.
Модель ценообразования на капитальные активы (САРМ) основывается на том факте, что инвесторы, вкладывающие свои средства в рисковые активы, ожидают некоторого дополнительного дохода, превышающего безрисковую ставку дохода, как компенсацию за риск владения этими активами. Подобное требование описывается техническим термином «неприятие риска» (riskavertioп). Не принимающие риск инвесторы не обязательно избегают его. Однако они требуют компенсацию в форме дополнительного ожидаемого дохода за принятие риска по инвестициям, доходность по которым не является гарантированной.
Другими словами, САРМ предполагает, что норма дохода по рисковому активу складывается из нормы дохода по безрисковому активу (безрисковой ставки) и премии за риск, которая связана с уровнем риска по данному активу.
Фундаментальное допущение, положенное в основу данной модели, состоит в том, что та часть ожидаемого дохода по ценной бумаге или другому рисковому активу, которая приходится на премию за риск, является функцией связанного с данным активом систематического риска. Поскольку специфический риск достаточно легко можно устранить диверсификацией портфеля, то с точки зрения рынка он не является необходимым. А раз так, то рынок «не вознаграждает» инвестора за этот риск; вознаграждение за риск зависит только от систематического риска.
Для измерения величины систематического риска существует специальный показатель - коэффициент
где rx - корреляция между доходностью ценной бумаги х и средним уровнем доходности ценных бумаг на рынке;
Уровень риска отдельных ценных бумаг определяется на основе таких значений:
По портфелю
Модель ценообразования на капитальные, активы описывает уравнение, выражающее отношение между требуемой нормой дохода по активу и систематическим риском, измеряемым
Любая требуемая доходность ценной бумаги равна безрисковой норме прибыли плюс премия за риск.
Таким образом, чем более рисковой является ценная бумага, т.е. чем больше
В соответствии с САРМ, если ожидаемая норма дохода и уровень риска, измеряемый
Исходя из сказанного можно сформулировать основные постулаты, на которых построена классическая портфельная теория.
1. Рынок состоит из конечного числа активов, доходности которых для заданного периода считаются случайными величинами.
2. Инвестор в состоянии, например, исходя из статистических данных, получить оценку ожидаемых (средних) значений доходностей и их попарных ковариаций, и степеней возможной диверсификации риска.
3. Инвестор может сформировать любые допустимые (для данной модели) портфели из имеющихся на рынке активов. Доходность портфелей является также случайной величиной.