Смекни!
smekni.com

Групповые дисперсии. Агрегатный индекс себестоимости (стр. 1 из 4)

Задача 1. По данным о производственной деятельности ЗАО определить средние затраты на 1 руб. произведенной продукции в целом по ЗАО.

Таблица 1 - Исходные данные

Предприятие Общие затраты на производство, млн. руб. Затраты на 1 руб. произведенной продукции, коп.
1 2,12 75
2 8,22 71
3 4,43 73

Решение:

Для определения средних затрат на 1 рубль произведенной продукции необходимо воспользоваться средней гармонической, так как у нас известен числитель и неизвестен знаменатель. Для определения средней строим вспомогательную таблицу.

Таблица 2 - Вспомогательная

Предприятие Общие затраты на производство, млн. руб., (Wi) Затраты на 1 руб. произведенной продукции, руб. (Xi) Объем произведенной продукции, млн руб. (Wi/Xi)
1 2,12 0,75 2,83
2 8,22 0,71 11,58
3 4,43 0,73 6,07
Итого: 14,77 20,47

Так средние затраты на 1 рубль продукции рассчитываются по формуле

,

где х - признак (варианта) - индивидуальные значения усредняемого признака;

показатель, представляющий собой реально существующий экономический показатель равный х∙ f:

Данные берутся из таблицы.

Ответ: Средние затраты на 1 рубль произведенной продукции равны 72 коп.

Задача 2. По данным 10% -го выборочного обследования рабочих по стажу работы, результаты которого приведены ниже, определить:

1) относительную величину структуры численности рабочих;

2) моду и медиану стажа рабочих;

3) средний стаж рабочих цеха;

4) размах вариации;

5) среднее линейное отклонение;

6) дисперсию;

7) среднее квадратическое отклонение;

8) коэффициент вариации;

9) с вероятностью 0,997 пределы, в которых изменяется средний стаж рабочих в целом по предприятию;

10) с вероятностью 0,997 пределы, в которых изменяется доля рабочих, имеющих стаж работы более 10 лет в целом по предприятию. Сделать выводы.

Таблица 3 - Исходные данные

Группы рабочих по стажу, лет До 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14
Число рабочих 6 8 12 24 17 8 5

Решение:

1) Находим относительную величину структуры численности рабочих, для этого строим следующую таблицу.

Таблица 4 - Относительная структура численности рабочих

Группы рабочих по стажу, лет Число рабочих Структура,%
До 2 6 7,5
2 - 4 8 10
4 - 6 12 15
6 - 8 24 30
8 - 10 17 21,25
10 - 12 8 10
12 - 14 5 6,25
Итого: 80 100

2) Находим моду и медиану стажа рабочих. Для этого строим вспомогательную таблицу.

Таблица 5 - Вспомогательная.

Группы рабочих по стажу, лет Число рабочих (fi) Середина интервала, (xi) xi*fi fi. накопл
До 2 6 1 6 6
2 - 4 8 3 24 14
4 - 6 12 5 60 26
6 - 8 24 7 168 50>40
8 - 10 17 9 153 67
10 - 12 8 11 88 75
12 - 14 5 13 65 80
Итого: 80 564

Мода - это наиболее часто встречающееся значение ряда:

,

где

- мода;
- нижняя граница модального интервала. Интервал с максимальной частотой является модальным;
- шаг модального интервала, который определяется разницей его границ; fmo - частота модального интервала; fmo-1 - частота интервала, предшествующего модальному; fmo+1 - частота интервала, последующего за модальным.

Медианой является значение признака х, которое больше или равно и одновременно меньше или равно половине остальных элементов ряда распределения. Медиана делит ряд на две равные части:

,

где xme- нижняя граница медианного интервала. Интервал, в котором находится порядковый номер медианы, является медианным. Для его определения необходимо подсчитать величину

. Интервал с накопленной частотой равной величине
является медианным; i - шаг медианного интервала, который определяется разницей его границ;
- сумма частот вариационного ряда; Sme-1
- сумма накопленных частот в домедианном интервале; fme- частота медианного интервала.

3) Находим средний стаж рабочих цеха:

,

где х - признак (варианта) - индивидуальные значения усредняемого признака, в качестве которого берется середина интервала, определяемая как полусумма его границ;

f - частота, т.е. числа, показывающие, сколько раз повторяется та или иная варианта.

Сравниваем полученные значения, в нашем случае получаем:


,

что говорит о левосторонней асимметрии.

По этим данным можно сделать вывод о том, что средний стаж рабочих составляет 7,05 лет; наиболее часто встречаются рабочие со стажем 7,263 года. Кроме того, половина рабочих имеет стаж более 7,166 лет, а другая - менее 7,166 лет.

4) Находим размах вариации.

Размах вариации:

,

где хmax - максимальное значение признака; х min - минимальное значение признака.

Так, разница между максимальным значением признака и минимальным составляет 12.

5) Находим среднее линейное отклонение:

,

где

- индивидуальные значения признака,
- средняя величина; f - частота.

Строим расчетную таблицу.

Таблица 6 - Расчетная

Середина интервала, (xi)
Число рабочих (fi)
1 6,05 6 36,3 36,60 219,62
3 4,05 8 32,4 16,40 131,22
5 2,05 12 24,6 4, 20 50,43
7 0,05 24 1,2 0,00 0,06
9 1,95 17 33,15 3,80 64,64
11 3,95 8 31,6 15,60 124,82
13 5,95 5 29,75 35,40 177,01
7,05
80 189 767,80

.

Так средний абсолютный разброс значений вокруг средней составил 2,362. То есть работники отличаются по стажу друг от друга в среднем на 2,362 года.

6) Находим дисперсию:

7) Находим среднее квадратическое отклонение:

.

Средний разброс стажа от среднего стажа в 7,05 лет составляет 3,097.

8) Находим коэффициент вариации:

.

Так как коэффициент вариации больше 33%, то это говорит о высокой степени неоднородности совокупности.

9) Находим с вероятностью 0,997 пределы, в которых изменяется средний стаж рабочих в целом по предприятию.

Границы генеральной средней:

,

где

- генеральная средняя,
- выборочная средняя, Δ
- предельная ошибка выборочной средней:

,