Смекни!
smekni.com

Дисперсионный анализ (стр. 3 из 3)

показателей.

Решение

Для упрощения решения представим его в виде таблицы и для нахождения средней и дисперсии воспользуемся способом моментов:

Расход сырья на 1‑цу изделия, г. Изготовленно изделий, шт. Середина интервала. |Х-Х|·f (X – A) (X – A) i (Х – А)·f i (Х – А) 2 i2 (X – A) 2 ·f i2
До 20 25 19 100 -4 -2 -50 4 100
20 – 22 32 21 64 -2 -1 -32 1 32
22 – 24 67 23 0 0 0 0 0 0
24 – 26 37 25 72 2 1 37 1 37
Свыше 26 24 27 96 4 2 48 4 96
Итого 185 å |Х-Х| · f= 332 å(X-A) ·f/ i = 3 å((X – A) / i) 2·f = 265

1. Для нахождения средней и дисперсии воспользуемся способом моментов: Х=m1 · i +A; s2 = i 2 (n ·(m2 – m1 2);

m1= å((X – A) ·f / i))/åf; m2= å((X – A) / i) 2·f)/åf;

где

m1, m2 – соответственно моменты первого и второго порядка;

i – величина интервала;

А – варианта, имеющая наибольшую частоту;

F – значение весов или частот каждой варианты.

Наиболее частото встречаются изделия с расходом сырья на единицу продукции =23 г. Значит А=23 (г.).

Определим величину интервала (визуально видно, что интервалы имееют равную величину):

I=22–20=24–22=26–24=2 (г.)

На основании расчетов представленных в таблице найдем Х и s2:

Х= (3/185) · 2 + 23=23,03 (г.)

s2 = 4 · ((265/185) – (3/185) 2)= 4 · (1,43 – 0)=5,72

Найдем среднее квадратическое отклонение:

s=√5,72=2,39 (г.)

2. Определим среднее линейное отклонение:

L= 332/185=1,79 (г.)

3. Определим коэффициент вариации:

V=1,79/23,03=0,078 (7,8%).

Вывод

На основании проведенных расчетов можно сделать следующие выводы:

– средний расход сырья на единицу изделия равен ≈ 23 г.

– среднее квадратическое отклонение показывает, что возможно отклонение от среднего расхода сырья на единицу продукции как в сторону увеличения, так и в сторону уменьшения на 2,39 г., что составляет 7,8% (см. коэффициент вариации).

– среднее линейное отклонение также показывает возможное отклонение от среднего расхода сырья на единицу продукции как в сторону увеличения, так и в сторону уменьшения, но менее точно, чем среднее квадратическое отклонение, и составляет 1,79 г.

Лабораторная работа №3

Расчет внутри групповой и межгрупповой дисперсии. Правило сложения дисперсий

Цель – изучить элементы дисперсионного анализа. Получить практические навыки производства на ЭВМ трудоемких расчетов показателей внутригрупповой, межгрупповой дисперсий для различного количества групп. Произвести расчет корреляционного отношения.

Проверить правило сложений дисперсий. Приобрести навыки анализа и практического применения этих показателей.

Выполнение задания предусматривает расчет показателей, характеризующих случайную и систематическую вариации и их роли в общей вариации. Эти показатели широко используются на производстве при количественной оценке влияния различных факторов на те или иные показатели, осуществляемой с помощью дисперсионного анализа.

Общая дисперсия рассматривалась при выполнение заданий 1 и 2. Она характеризует общую вариацию под влиянием всех причин, ее вызывающих и исчисляется по формуле (3).

Для оценки влияния группировочного признака (постоянного фактора) на величину вариаций рассчитывают межгрупповую дисперсию, исчисляемую на основании групповых средних:

U² =(S(Xi-X)² *fi)/Sfi (1)

U² – межгрупповая дисперсия;

Xi – групповые средние исчисляются по формуле (1)

X – общее среднее (также исчисляется по формуле (1)

fi – групповые частоты.

При оценке влияния случайных факторов и их роли в общей вариации определяют внутригрупповую дисперсию. Она исчисляется как средняя арифметическая из групповых дисперсий.

s ² =(Ss ² i *fi)/Sfi (2)

s² – внутригрупповая (средняя из групповых) дисперсия;

s² – групповые дисперсии (исчисляются по формуле (2)).

В математической статистика доказано, что общая дисперсия s² равна сумме внутригрупповой и межгрупповой дисперсий, т.е.

s² = s² +U²

Исходя из этого правила, можно определить влияние случайной и систематической дисперсий на общую дисперсию, установить тесноту связи между признаками. Для этого применяется в дисперсионном анализе корреляционное отношение ν:

ν=s

Задача 2

Имеются следующие данные о распределении рабочих по возрасту работы двух заводов и объединения

Возраст работы, лет Количество рабочих
Завод 1 Завод 2 Объединение
До 5 лет 67 32 99
5–10 125 77 202
10–15 162 119 281
15–20 89 70 159
Свыше 20 42 37 79

Определите:

1. средний возраст работы одного рабочего по каждому заводу и по объединению в целом;

2. дисперсию для каждого завода (внутригрупповую) и для объединения в целом (общую);

3. среднюю из внутригрупповых дисперсий;

4. межгрупповую дисперсию;

5. корреляционное отклонение.

Проверьте правило сложения дисперсий. Поясните сущность исчисленных показателей.

Решение

1. Определим средний возраст работы одного рабочего по каждому заводу и по объединению в целом.

Так как нам дан интервальный ряд с равными интервалами, то определим сначала середины интервалов и полученные данные занесем в таблицу.

Таблица 1

Возраст работы, лет. Середина интервала. Количество рабочих.
Завод 1 Завод 2 Объединение.
До 5 2,5 67 32 99
5 – 10 7,5 125 77 202
10 – 15 12,5 162 119 281
15 – 20 17,5 89 70 159
Свыше 20 22,5 42 37 79
Итого 485 335 820

Средний возраст работы одного рабочего на заводе 1:

Х1 = (2,5 · 67 + 7,5 · 125 + 12,5 · 162 + 17,5 · 89 + 22,5 · 42)/485=11,6 (лет).

Средний возраст работы одного рабочего на заводе 2:

Х2 = (2,5 · 32 + 7,5 · 77 + 12,5 · 119 + 17,5 · 70 + 22,5 · 37)/335=12,5 (лет).

Средний возраст работы одного рабочего на объединении в целом:

Х =(2,5 · 99 + 7,5 · 202 + 12,5 · 281 + 17,5 · 159 + 22,5 · 79)/820=12,0 (лет).

2. Определим дисперсию для каждого завода в отдельности (внутригрупповую) и по объединению в целом:

Дисперсия на заводе 1:

s2 1= ((2,5–11,6) 2 · 67 + (7,5–11,6) 2 · 125 +(12,5–11.6) 2 · 163 + (17,5 –11,6)2· 89 + (22,5–11,6) 2 · 42)/485=32,72;

Дисперсия на заводе 1:

s22=((2,5–12,5) 2 · 32 + (7,5–12,5) 2· 77 + (12,5–12,5) 2 ·119 + (17,5–12,5) 2· 70+ (22,5–12,5) 2 · 37)/335=31,57

Дисперсия по объединению в целом (общую дисперсию):

u 2=((2,5–12.0) 2 · 99 + (7,5–12,0) 2 · 202 + (12,5–12,0) 2 · 281 + (17,5–12,0) 2 ·159 + (22,5–12,0) 2 · 79)/820=32,46

3. Определим среднюю из внутригрупповых дисперсий:

s2 =(32,72+31,57) /2=32,15

4. Определим межгрупповую дисперсию:

s2 = ((11,6–12,0) 2 ·485 +(12,5–12,0) 2 ·335)/820=0,20

5. Определим среднее квадратическое отклонение для каждого завода в отдельности и по объединению в целом:

Завод 1:

s1=√32,72=5,72 (лет).

Завод 2:

s2=√31,57=5,62 (лет).

Объединение:

s=√32,46=5.7 (лет).

6. Определим корреляционное отклонение (коэффициент вариации):

Корреляционное отклонение (коэффициент вариации) для завода 1:

ν =√32,72 /11,6=0,493 (49,3%);

Корреляционное отклонение (коэффициент вариации) для завода 2:

ν = √31,57 /12,5=0,449 (44,9%);

Корреляционное отклонение (коэффициент вариации) по объединению в целом (общее):

ν = √32,46 /12,0=0,475 (47,5%).

7. Проверим правило сложения дисперсий:

u 2= 32,17 +0,2=32,37≈32,46

Выводы

На основании проведенных расчетов можно сделать следующие выводы:

– средний возраст работы одного рабочего на заводе 1 равен 11,6 лет, на заводе 2 -12,5 лет и по объединению в целом -12,0 лет.

– в среднем отклонение от среднего возраста работы одного рабочего, как в сторону увеличения, так и в сторону уменьшения по заводу 1 составляет 5,72 лет (или 49,3%), по заводу 2 –5,62 лет (или 44,9%), по объединению в целом –5,7 лет (или 47,5%).