Смекни!
smekni.com

Зарубежная методика оценки вероятности банкротства и ее применение в российских условиях (стр. 2 из 5)

На рисунке 1 представлено корреляционное поле и положение на нем дискриминантной линии для двух показателей – коэффициента покрытия и коэффициента финансовой зависимости.

Рис. 1. Дискриминантная линия на корреляционном поле показателей покрытия и финансовой устойчивости.

Из рисунка 1 видно, что предприятия, у которых значения показателей коэффициента покрытия и коэффициента финансовой независимости располагаются ниже и правее дискриминантной линии, вероятнее всего обанкротятся (вероятность их банкротства превышает 50 %). При этом, чем дальше отстоит точка показателей от дискриминантной линии, тем выше вероятность банкротства. Для предприятий, у которых сочетание значений показателей финансовой устойчивости и покрытия находится выше и левее дискриминантной линии, почти нет угрозы банкротства. Например, точка 2 расположена над дискриминантной линией и достаточно далека от нее; она отражает состояние предприятия 2, у которого коэффициент покрытия равен 3, а коэффициент финансовой зависимости равен 20 %. Предприятие 19 имеет высокую вероятность банкротства (около 98 %), и оно действительно обанкротилось.

Выше отмечалось, что по практическим данным установлены значения для коэффициента покрытия не ниже единицы, а для коэффициента финансовой зависимости не выше 50 %. Если подставить приведенную выше двухфакторную модель Альтмана эти значения (Кп = 1 и Кфз = 50 %), то получим Z = 1,, то есть почт с 90- процентной вероятностью можно утверждать, что такое предприятие в российских условиях обязательно обанкротится.

Прогнозирование банкротства с использованием двухфакторной модели в российских условиях не обеспечивает высокой точности. это объясняется тем, что данная модель не учитывает влияния на финансовое состояние предприятия других важнейших факторов и показателей, характеризующих, например, рентабельность, отдачу активов, деловую активность предприятия и так далее [9, с. 67]. Дискриминантная граница между банкротами и небанкротами имеет вид не тонкой линии, а размытой полосы. Ошибка прогноза с помощью двухфакторной модели оценивается интервалом Δ Z =

0,65. Чем больше факторов будет учтено в модели, тем, естественно, точнее рассчитанный с ее помощью прогноз.

При использовании модели Альтмана возможны два типа ошибок[8, с. 156]:

- прогнозируется сохранение платежеспособности предприятия, а в действительности происходит банкротство;

- прогнозируется банкротство предприятия, а оно сохраняет платежеспособность.

По мнению Альтмана, с помощью пятифакторной модели прогноз банкротства на горизонте один год можно установить с точностью до 95 %. При этом ошибка первого типа возможна в 6 %, а ошибка второго типа - в 3 %случаев. Спрогнозировать банкротство на горизонте в 2 года удается с точностью до 83 %, при этом ошибка первого рода имеет место в 28 % случаях, а ошибка второго рода имеет место в 6 % случаев.

В 1977 году Альтман со своими коллегами разработал более точную семи факторную модель. Эта модель позволяет спрогнозировать банкротство на горизонте в 5 лет с точностью до 70 %. В модели в качестве переменных используются следующие показатели[10, с. 178]:

- рентабельность активов;

- изменчивость или динамика прибыли;

- коэффициент покрытия процентов по кредитам;

- кумулятивная прибыльность;

- коэффициент покрытия или ликвидности;

- коэффициент автономии;

- совокупные активы.

В таблице 3 приведены сведения о точности прогнозирования банкротства с помощью пятифакторной и семи факторной модели Альтмана.

Таблица 3

Точность прогноза банкротства

Количество лет до банкротства Прогноз по пятифакторной модели Прогноз по семи факторной модели
Банкрот Небанкрот Банкрот Небанкрот
1 93,9 97 96,2 89,7
2 71,9 93,9 84,9 93,1
3 48,3 - 74,5 91,4
4 28,6 - 68,1 89,5
5 36 - 69,8 82,1

При проведении финансового анализа практически к любому оценочному показателю нужно подходить критически. Вместе с тем значение показателя Z следует воспринимать как сигнал опасности. В этом случае необходим глубокий анализ причин, вызвавших снижение этого показателя.

Таким образом, разработанные на Западе модели прогнозирования вероятности банкротства весьма применимы и в современных российских условиях, но, тем не менее, имеют ряд особенностей и характерных черт.


ПРАКТИЧЕСКАЯ ЧАСТЬ

Задача № 1

ИСХОДНЫЕ ДАННЫЕ ЗАДАЧИ № 1:

Исходные данные задачи представлены в таблице 4, где Х - готовая продукция на складе предприятия, У – выручка от реализации продукции.

РЕШЕНИЕ:

1) Найдем параметры уравнения регрессии методом наименьших квадратов.

Предполагается наличие линейной связи между Х и У, то есть регрессионная модель описывается функцией:

Уi’ = а0 + а1 х,(5)

Где Уi’ – значение результативного признака;

а0 и а1 – параметры уравнения регрессии, определяемые из системы уравнений:

,(6)

Для нахождения параметров уравнения регрессии по методу наименьших квадратов, составим расчетную таблицу (таблица 4)

Таблица 4

Расчетная таблица для нахождения параметров уравнения регрессии

№ п/п Х У Х2 ХУ У' Уi - У' /Уi - У'//Уi
1 18,7 5,5 349,69 102,85 6,399 -0,899 0,163455
2 15,2 4,5 231,04 68,4 5,454 -0,954 0,212
3 15 5 225 75 5,4 -0,4 0,08
4 26,8 7,6 718,24 203,68 8,586 -0,986 0,129737
5 22,3 10,5 497,29 234,15 7,371 3,129 0,298
6 24,6 7,8 605,16 191,88 7,992 -0,192 0,024615
7 27,1 7,8 734,41 211,38 8,667 -0,867 0,111154
8 35,8 10,1 1281,64 361,58 11,016 -0,916 0,090693
9 36,2 11,8 1310,44 427,16 11,124 0,676 0,057288
10 23,2 7,4 538,24 171,68 7,614 -0,214 0,028919
11 21,3 6,8 453,69 144,84 7,101 -0,301 0,044265
12 23,2 6,4 538,24 148,48 7,614 -1,214 0,189688
13 27,2 8 739,84 217,6 8,694 -0,694 0,08675
14 18,7 6,2 349,69 115,94 6,399 -0,199 0,032097
15 23,6 7,2 556,96 169,92 7,722 -0,522 0,0725
16 28 8,7 784 243,6 8,91 -0,21 0,024138
17 23,9 7,4 571,21 176,86 7,803 -0,403 0,054459
18 28,9 9,4 835,21 271,66 9,153 0,247 0,026277
19 19,6 6,5 384,16 127,4 6,642 -0,142 0,021846
20 23,4 9,2 547,56 215,28 7,668 1,532 0,166522
21 28,9 6,1 835,21 176,29 9,153 -3,053 0,500492
22 25,9 7,9 670,81 204,61 8,343 -0,443 0,056076
23 25,9 9,4 670,81 243,46 8,343 1,057 0,112447
24 27,8 10,5 772,84 291,9 8,856 1,644 0,156571
25 32,9 9,6 1082,41 315,84 10,233 -0,633 0,065938
26 30,9 11,5 954,81 355,35 9,693 1,807 0,15713
27 18,3 6,6 334,89 120,78 6,291 0,309 0,046818
28 21,6 7,2 466,56 155,52 7,182 0,018 0,0025
29 15,7 5,6 246,49 87,92 5,589 0,011 0,001964
30 22,4 9,5 501,76 212,8 7,398 2,102 0,221263
Итого 733 237,7 18788,3 6043,81 238,41 - 3,235601

Подставляем полученные значения из таблицы 4 в формулу (6):

Из первого уравнения выражаем а0, подставляем во второе уравнение и получаем соответствующее значение:

а1 = 0,27 и а0 = 1,33

Тогда искомое уравнение регрессии имеет вид:

Уi’= 1,33 + 0,27Х.

2) Для проверки адекватности определим среднее относительное линейное отклонение по формуле (7)

,(7)

Подставляя значения из таблицы 4 в формулу (7), получим:

Е = 0,10 или 10 %.

Так как Е меньше 15 %, то связь между факторным и результативным признаками достаточно тесная.

Полученное уравнение регрессии пригодно для прогнозных значений, так как значение Е меньше 15 %.