Смекни!
smekni.com

Индексы, их сущность, разновидность и области применения (стр. 1 из 3)

Реферат

«Индексы, их сущность, разновидность и области применения»


Содержание:

1. Общие понятия об индексах, значение индексов

2. Задачи, решаемые посредством использования индексов

3. Индексы структуры

4. Измерение результатов изменения признаков с несоизмеримыми элементами

5. Две формы общих индексов. Агрегатные и средние индексы

6. Базисные и цепные индексы

7. Особенности индексов выполнения плана и территориальных индексов


1. Общие понятия об индексах, значение индексов

Среди методов статистического анализа важное место занимает индексный метод. Слово индекс (index) в переводе с латинского означает показатель. Индексы, прежде всего, - относительные показатели. Причём если любой индекс - относительная величина, то не всякая относительная величина является индексом. Индексом называются относительные величины, характеризующие соотношение явлений во времени, пространстве и по сравнению с планом. Таким образом, в статистике индексы - особые относительные величины они дают качественно-количественную оценку результата изменения соответствующих явлений во времени и пространстве.

Отличие индексов от указанных относительных величин заключается в следующем. Обыкновенные указанные величины получаются в результате сравнения значений (объёмов) одного признака, рассматриваемого изолированно. Например, можно сравнить выплавку стали за два периода, по какому либо хозяйствующему субъекту. Индексы получаются также в результате сравнения значений одного признака, но рассматриваются не изолированно, не самостоятельно, а в системе взаимосвязанных признаков. Индексная система признаков включает в себя как признак, изменение которого непосредственно интересует исследователя, так и другой (другие) признак (признаки), изменение которых исследователя непосредственно не интересует, хотя сами по себе эти признаки имеют существенное значение в анализируемой индексной системе. При этом в индексном отношении признак, изменение которого интересует исследователя, принимается за переменную, т.е. в числителе и знаменателе имеет разное численное значение, а другие, не изменяющиеся признаки, принимаются за постоянную, в числителе и знаменателе имеют одинаковое значение. Так, при изучении изменения количества выпускаемой продукции по данным её стоимости индексной системой признаков выступает произведение признака «количества» на признак «цена»; в индексном отношении здесь количество продукции будет переменным элементом, а цена - постоянным. В порядке исключения здесь может быть проиндексирована и сама «стоимость» продукции в целом, являющаяся произведением количества на цену; в этом случае индекс покажет совместное изменение и цены и количества.

В зависимости от цели исследования признаки могут выступать в одних случаях как единое целое, неразложимое, изолированное и по ним будут исчислены обыкновенные относительные величины: а в других как результат действия различной совокупности факторов и, следовательно, по ним могут быть исчислены индексы, как в целом, так и по отдельным факторам признакам. Например, по данным о добыче угля за два года можно рассчитать обыкновенную относительную величину динамики. Но эти же данные можно рассматривать как результат действия двух факторов - числа рабочих и среднегодовой выработки одного рабочего. В этом случае можно исчислить индекс роста добычи угля в целом (он будет равен относительной величине динамики) и индексы влияния на добычу угля числа рабочих и среднегодовой выработки одного рабочего.

В индексных расчётах так же могут быть использованы относительные величины динамики пространственного сравнения и анализа выполнения плана. Рассчитанные не по совокупности явлений, а по отдельным явлениям и по отдельным элементам признака они также могут использоваться в индексных расчётах и называются «индивидуальными индексами», а собственно индексы в отличие от них называют «общими» или «сводными» индексами. Если совокупность предварительно расчленена на части или группы и по этим частям исчислены индексы, то полученные показатели иногда называют групповыми индексами или субиндексами. Отсюда следует, что теория индексов связана с теорией группировок.

Поскольку индексный показатель получается в результате сравнения двух величин, при расчёте его следует выполнять все требования, предъявляемые к научным сопоставлениям. В частности особенно следует выполнять требование об одно качественности сопоставляемых величин, на основе которых исчисляется индекс.

Основным предназначением индексного метода статистического исследования является выявления закономерности взаимосвязи между различными факторами, определяющими тенденцию развития исследуемого явления и их роль в процессе этого развития. Диалектика требует всестороннего исследования явлений. Но всестороннее познание явлений невозможно без изучения его отдельных сторон. Для познания же отдельных сторон явления целое приходится расчленять на части, т.е. отдельные его составляющие и изучать их обособлено. Это изучение происходит в условиях отвлечения от изменения всех остальных сторон явлений, кроме интересующей стороны. Такой приём исследования составляет не что иное, как приём расчёта индекса, в котором одна величина принимается за переменную, другая - за постоянную. Поэтому индексы и применяют как средство изучения причин, следствий, влияния отдельных факторов на общее изменение явления, как средство установления связей и взаимозависимостей между признаками явлений.

На примере индексов особо рельефно видно, что обобщающие статистические показатели, как и любые научные понятия, действительно выступают, с одной стороны, итоговыми количественными характеристиками развития явлений, оценивающими достигнутые уровни развития, с другой - особыми приёмами исследования общественных процессов в условиях абстрагирования от привходящих обстоятельств. Поэтому вполне допустимо говорить о методе средних, методе относительных величин и особенно - об индексном методе исследования.

Индексный метод имеет свою терминологию и символику. Обычно для обозначения индексируемых величин пользуются следующей символикой: q - количество (объём) какого-либо продукта, c или z - себестоимость единицы изделия, p - цена единицы продукции, t - затраты времени на единицу продукции, w - выработка продукции в единицу времени и т.д. Чтобы различать период к которому относятся индексируемые величины, возле символа внизу ставятся подстрочные знаки. Например, если сравнивается продукция 1996 и 1990 годов, то первая обозначается через q1 , а вторая - через q0 . Обычно нулевое обозначение левое обозначение имеет принимаемая база сравнения. В качестве баз в индексных отношениях, как и при других подобных сопоставлениях, могут выступать показатели трёх видов - плановые данные, данные за предшествующие периоды, данные по другим аналогичным объектам. Выбор той или иной индексной базы зависит от цели исследования.

2. Задачи решаемые посредством использования индексов

Посредством индексов решаются три главные задачи:

1)Измеряются факторы в общей динамике показателей.

2)Обособляется влияние структуры явлений от изменения индексируемого признака при анализе динамики вторичных признаков.

3)Измеряются результаты изменения признаков с несоизмеримыми элементами.

Из этих задач центральной является первая. Как уже отмечалось, специфичным для индексов является именно изучение причин, влияния отдельных факторов (признаков) на общую динамику явлений (показателей). Выявить влияние отдельных факторов можно, лишь последовательно рассматривая каждый из факторов как переменный, предполагая остальные постоянными. Полученные в результате пофакторного анализа взаимосвязанные друг с другом индексы называют в статистике системой индексов.

В практике расчёта статистической системы индексов при индексировании вторичных признаков взвешивание следует производить обычно по отчётным весам, при индексировании первичных признаков - по базисным весам. Однако при расчёте некоторых индексов выполнения плана возможно нарушения данного правила. Выбор периода весов всегда следует делать исходя из конкретной ситуации и поставленных перед исследователем задач.

Система индексов открывает большие возможности для решения широкого круга экономических задач. Например, не располагая данными об абсолютном значении интересующих исследователя явлениях, а, имея данные об относительном росте, тенденции их изменения он может решать задачи по исследованию процесса изменения отдельных факторов используя взаимосвязь индексов в системе индексов. При решении задач подобного рода сначала устанавливают, как связаны между собой исходные признаки, а после этого осуществляют переход к системе индексов.

Пользуясь системами индексов, в ряде случаев можно исчислить расчётные показатели, которые не имеют конкретных аналогов, т.е. не встречаются в виде индивидуальных исходных данных, необходимых для индексных расчётов. Так можно, например, исчислить индекс реальной заработной платы, который прямо пропорционален, индексу номинальной заработной платы и обратно пропорционален индексу цен:

где:

Iрз - индекс реальной заработной платы;

Iнзп – индекс номинальной заработной платы;

Iц – индекс цен.

Реальная заработная плата - заработная плата, выраженная в потребительских товарах и услугах, а номинальная - заработная плата, выраженная в денежных единицах.

В практике отечественной статистики индексы используются, как правило, в системе. Это, во-первых, обеспечивает анализ явлений с разных сторон и, во-вторых, имеет контрольное значение, поскольку система требует увязки полученных результатов.