Аэропорт может временно закрываться, и прибывший самолет будет вынужден отправится в другой аэропорт, если число эшелонированных самолетов, ожидающих посадки, достигнет заданной величины. Операция обслуживания может быть ускорена путем оборудования специальных гасителей скорости, которые позволяют самолетам приземлятся на главной полосе с большой скоростью.
Основной проблемой при управлении аэропортом является связь. Если входящий поток как на земле, так и в воздухе велик, то аэропорт должен быстро связываться с самолетами и получать ответ. При организации связи важной проблемой является определение числа операторов и каналов связи, необходимых для регулирования различных состояний перегруженности, которые могут возникнуть. В данном случае необходимо выбрать оптимальное число каналов для обслуживания требований, поступающих в соответствии с данным распределением. Можно произвести сравнение стоимость дополнительного канала со стоимостью возросшего объема обслуживания существующими каналами.
Важной проблемой является наличие соответствующего места для ожидания в очереди. Например, при проектировании аэропорта существенным моментом является наличие наземной рулежной дорожки для самолетов, готовых к влету.
Во многих задачах теории массового обслуживания для определения необходимого показателя эффективности достаточно знать распределение входящего потока, дисциплину очереди (например, случайный выбор, обслуживание в порядке поступления или с приоритетом) и распределение времени обслуживания. В других задачах нужно иметь дополнительную информацию. Например, в случае отказов в обслуживании нужно определить вероятность того, что поступившее требование получит отказ сразу после прибытия или через некоторое время, т.е. покинет очередь до или после присоединения к ней.
С теоретической точки зрения очередь можно рассматривать как потоки, походящие через систему пунктов обслуживания, соединенных последовательно или параллельно. На поток оказывают влияние различные факторы; они могут замедлять его, приводить к насыщению и т.д.
Система массового обслуживания типа (M/M/1):(GD/¥/¥): в модели (M/M/1):(GD/¥/¥) имеется единственный узел обслуживания (обслуживающий прибор), а на вместимость блока ожидания и емкость источника требований никаких ограничений не накладывается. Входной и выходной потоки являются пуассоновскими с параметрами l и m соответственно.
Прежде всего получим уравнение в конечных разностях для рn(t), т.е. для вероятности того, что в интервале времени t в системе находится n требований (клиентов). После этого при надлежащих условиях перейдем к пределам пи t®¥ и получим формулу для рn, соответстветствующих сиационарному режиму исследуемого процесса.
Система массового обслуживания типа (M/M/1):(GD/N/¥): разница между моделью типа (M/M/1):(GD/N/¥) и моделью типа (M/M/1):(GD/¥/¥) заключается только в том, что требований, допускаемых в блок ожидания обслуживающей системы, равняется N. Это означает, что при наличии в системе N требований ни одна из дополнительных заявок на обслуживание не может присоединяться к очереди в блоке ожидания. В результате эффективная частота поступлений требований lЭФФ для системы указанного типа становятся меньше частоты l, с которой заявки на обслуживание генерируются соответствующим источником.
Дифференциально-разностные уравнения как для n=0, так и 0<n<N
имеют
Система массового обслуживания типа (M/M/c):(GD/¥/¥): процесс массового обслуживания, описываемый моделью (M/M/c):(GD/¥/¥), характеризуется интенсивностью входного потока l и тем обстоятельством, что параллельно обслуживаются может не более с клиентов. Средняя продолжительность обслуживания одного клиента равняется 1/m. Входной и выходной потоки являются пуассоновскими. Конечная цель использования с параллельно включенных обслуживающих приборов заключается в повышении (по сравнению с одноканальной системой) скорости обслуживания требований за счет обслуживания одновременно с клиентов. Таким образом, если n=c, то интенсивность входного (выходного) потока равняетсясm. С другой стороны, если n<c, то интенсивность входного (выходного) потока равняется nm<cm (поскольку при этом занятыми обслуживанием окажутся не все обслуживающие приборы, а лишь n(<c) приборов). По существу, использование нескольких обслуживающих приборов эквивалентно использованию одного обслуживающего прибора, быстродействие которого варьируется, увеличиваясь при наличии в системе n требований ровно в n раз.
Таким образом, для анализа модели (M/M/c) требуется построить обобщенную одноканальную модель, в которой как интенсивность входного потока, так и скорость обслуживания зависели бы от n, так что вместо безиндексных параметров l и m нужно было бы использовать величины ln и mn. Нужно вывести формулу для вычисления стационарных значений значений р n. Полагая ln =l, а m n =nm при n<c или m n =сm при n³c, можно получить числовые оценки для функциональных характеристик системы, описываемой (М/М/с)- моделью. При заданных значениях ln и m n после нахождения значения р n окажется также возможным получить результаты для СМО других типов.
Для краткого обозначения систем массового обслуживания и выбора математических методов операционных характеристик эффективности применяются трех- и четырехкодовые шифры. Трехкодовой шифр имеет вид (λ/μ/n). Первый элемент указывает на тип распределения входящего потока требований, второй – на время обслуживания, третий – на число каналов обслуживания. В четырехкодовом шифре четвертый элемент обозначает характер очереди. Например, код (λ/μ/n/m) отражает, что в очереди может быть не более m требований.
На практике чаще всего приходится иметь дело с входящими потоками требований, для которых моменты наступления событий и промежутки времени между ними случайны. В таком случае поток требований может описываться произвольной функцией распределения случайной величины.
Наиболее просто описываются системы с простейшим потоком требований, то есть удовлетворяющим свойствам стационарности, ординарности и отсутствия последствий. Свойством стационарности обладает поток, у которого вероятность поступления зависит только от длины промежутка. Это значит, что параметры закона распределения потока требований не изменяются со временем. Потом обладает свойством ординарности, если вероятность поступления на малом участие ∆t двух или более требований очень мала по сравнению с вероятностью поступления одного требования. Другими словами, если Р>1(∆t) – вероятность поступления в течение промежутка времени ∆t более одного требования, то Р>1(∆t)=О(∆t), где О(∆t) – очень малая величина по сравнению с ∆t. В результате требования приходят по одному.
Отсутствие последствия состоит в том, что число требований, поступивших в систему после некоторого промежутка времени, не зависит от того, сколько их пришло до этого момента. Доказано, что поток требований можно считать простейшим, если он получен суммированием достаточно большого числа не зависящих друг от друга потоков, влияние каждого из которых на сумму равномерно малое, и что простейшим их поток описывается пуассоновским законом распределения:
Рк(t)=λtk/k!*l-λt, где
Рk(t) - вероятность того, что за произвольно выбранный период времени t поступит k требований;
l – математическое ожидание случайной величины;
λ – плотность входящего потока, то есть среднее число требований в единицу времени.
Важным показателем процесса обслуживания считается время, под которым понимается интервал между момент поступления требования в канал и моментом его выхода из канала. Время может изменяться, что объясняется неполной идентичностью приходящих требований, состоянием требований, состоянием и возможностью обслуживающих устройств. Время обслуживания в большинстве систем следует рассматривать как случайную величину. В экономических процессах оно, чаще всего, распределено по показательному закону:
f(t)=μ*l-μt, где
μ- среднее число требований, обслуженных в единицу времени.
Тогда средняя продолжительность обслуживания будет равна:
tобсл.=∫∞0t*f(t)dt=∫∞0t* μ* l-μtdt=1/μ,
таким образом, задав систему массового обслуживания с помощью трех (λ/μ/n) или четырех (λ/μ/n/m) шифров, можно установить основные операционные показатели, характеризующие эффективность работы той или иной системы. В частности, среднее число простаивающих каналов, коэффициент загрузки каналов, средний процент обслуживаемых заявок, среднее время ожидания в очереди, среднее время пребывания заявки в системе обслуживания, среднюю длину очереди, средний доход в единицу времени и т.д.
2.2 Принятие решений с использованием моделей массового обслуживания
Трудности использования стандартных моделей, разработанных в теории массового обслуживания, можно преодолеть одним из следующих способов. Во-первых, можно модифицировать структурно-функциональные характеристики обслуживающей системы так, чтобы чисто логическим путем достичь желательных операционных показателей этой системы и одновременно сделать рассматриваемую систему массового обслуживания поддающейся анализу одной из стандартных математических моделей. Во-вторых, можно признать справедливым некоторые упрощающие предположения относительно реальной обслуживающей системы и, следовательно, возможно представить ее с помощью математической модели без риска получить существенные ошибки в численных оценках операционных характеристик исследуемой системы. Второй из указанных способов представляет собой более перспективным, поскольку за счет его реализации увеличивается круг задач, решение которых может быть обеспеченно путем использования разработанных в теории массового обслживания математических моделей и методов.