Смекни!
smekni.com

Межотраслевой баланс (стр. 2 из 3)

Величина aij называется коэффициентом прямых материальных затрат. Она показывает, какое количество продукции i-й отрасли идет на производство единицы продукции j-й отрасли. Коэффициенты aij считаются в межотраслевой модели постоянными.

Подставляя выражение (3.3) в формулу (3.1), получим:

Это соотношение можно записать в матричном виде:

X = AX + Y, (3.4)

где X = (X1, X2,..., Xn) - вектор валовых выпусков;

Y = (y1, y2,..., yn) - вектор конечного продукта;

A =

-

матрица коэффициентов прямых материальных затрат.

Коэффициенты прямых материальных затрат являются основными параметрами статической межотраслевой модели. Их значения могут быть получены двумя путями:

1) статистически. Коэффициенты определяются на основе анализа отчётных балансов за прошлые годы. Их неизменность во времени определяется подходящим выбором отраслей;

2) нормативно. Предполагается, что отрасль состоит из отдельных производств, для которых уже разработаны нормативы затрат; на их основе рассчитываются среднеотраслевые коэффициенты.

Выражение (3.4) принято называть балансом распределения продукции. Его можно использовать для анализа и планирования структуры экономики. Если известны коэффициенты прямых материальных затрат, то, задав конечный продукт по каждой отрасли, можно определить необходимые валовые выпуски отраслей. В этом заложена основная идея использования матричных моделей для планирования производства.

Преобразуем выражение (3.4):

X - AX = Y,

X (E - A) = Y,

X = (E - A) - 1Y, (3.5)

где E - единичная матрица.

До начала планирования следует выяснить, существует ли матрица, обратная матрице (E-A), и не будут ли получены отрицательные значения выпуска по отраслям.

Установим некоторые свойства коэффициентов прямых материальных затрат.

1. Неотрицательность, т.е. aij ≥ 0,

Это утверждение следует из неотрицательности величин xij и положительности валовых выпусков Xj.

2. Сумма элементов матрицы A по любому из столбцов меньше единицы, т.е.

Доказать это утверждение несложно.

Для любой отрасли условно чистая продукция есть величина положительная, поскольку включает в себя заработную плату, амортизацию, прибыль и т.д., т.е. Vj>0. Поэтому, используя соотношение (3.2), можно записать:

из соотношения (3.3):

откуда безусловно следует:

таким образом, утверждение доказано.

Можно показать, что при выполнении этих двух условий матрица B = (E - A) - 1 существует и если ее элементы неотрицательны. Говорят, что в этом случае матрица прямых затрат А является продуктивной.

Перепишем формулу (3.5):

X = BY, (3.6)

Матрица В носит название матрицы полных материальных затрат, а ее элементы bij называют коэффициентами полных материальных затрат. Коэффициент bij показывает, каков должен быть валовый выпуск i-й отрасли для того, чтобы обеспечить выпуск единицы конечного продукта j-й отрасли.

Можно показать, что

B = E + A + A2 + A3 +... (3.7)

Умножим обе части на (E - A):

B (E - A) = (E + A + A2 + A3 +. .) (E - A),

B (E - A) = E + A + A2 + A3 +. - A - A2 - A3 - ...,

B (E - A) = E,

B = E / (E - A),

B = (E - A) - 1.

Доказано.

Из соотношения (3.7) следует bij ≥ aij,

Таким образом, коэффициент полных материальных затрат bij, описывающий потребность в выпуске продукции i-й отрасли в расчете на единицу конечного продукта j-й отрасли, не меньше коэффициента прямых материальных затрат aij, рассчитываемого на единицу валового выпуска.

Кроме того, из соотношения (3.7) для диагональных элементов матрицы B следует:

bii ≥ 1,

Взаимосвязь коэффициентов прямых и полных материальных затрат проще всего проследить на примере: пусть единицей выпуска хлебопекарной промышленности является хлеб (рисунок 3.1).

Рисунок 3.1 - Взаимосвязь коэффициентов прямых и полных материальных затрат

Полные затраты электроэнергии для нашего примера складываются из прямых затрат и косвенных затрат всех уровней. Косвенные затраты высоких уровней являются незначительными и при практических расчетах ими можно пренебречь.

3. Модель межотраслевого баланса затрат труда

Предполагается, что труд выражается в единицах труда одинаковой степени сложности. Обозначим затраты живого труда в производстве j-го продукта через Lj, объем выпущенной продукции, как и прежде, Xj. Тогда коэффициент прямых затрат труда:

Определим полные затраты труда, как сумму прямых затрат живого труда и затрат овеществленного труда, перенесенного на продукт через израсходованные средства производства.

Формирование полных затрат труда в модели происходит по схеме, представленной на рисунке 3.2

Рисунок 3.2 - Порядок формирования полных затрат труда

где Tj - полные затраты труда на единицу j-го продукта; tj - прямые затраты труда на единицу j-го продукта; aijTi - затраты овеществленного труда, перенесенного на j-й продукт через i-е средство производства.

Таким образом:

Иначе, если известны коэффициенты полных материальных затрат bij, можно записать:

Более компактно соотношение можно записать в матричном виде:

T = tB,

где T = (T1, T2,..., Tn) - вектор-строка коэффициентов полных затрат труда;

t = (t1, t2,..., tn) - вектор-строка коэффициентов прямых затрат труда.

Аналогично трудовым затратам в межотраслевой модели могут быть учтены показатели фондоемкости изделий.

Василий Леонтьев, характеризуя значение балансовых моделей, писал: "Чтобы прогнозировать развитие экономики, нужен системный подход. Экономика каждой страны - это большая система, в которой много различных отраслей, и каждая из них что-то производит - промышленную продукцию, услуги и т.д., которые предлагаются другим отраслям. Каждое звено, компонент системы может существовать только потому, что получает что-то от других. Для производства каждого вида продукции нужно напрямую использовать большое количество других товаров, а еще больше - опосредованно.

Мы изучаем одну страну, беря в расчет 600-700 отдельных отраслей, японцы доходят до 2000".


4. Пример расчета межотраслевого баланса

Рассмотрим 2 отрасли промышленности: производство угля и стали. Уголь требуется для производства стали и некоторое количество стали в виде инструментов требуется для добычи угля. Предположим, что условия таковы: для производства 1 т. стали нужно 3 т. угля, а для 1 т. угля - 0,1 т. стали.

Отрасль Уголь Сталь
Уголь 0 3
Сталь 0.1 0

Мы хотим, чтобы чистый выпуск угольной промышленности был

тонн угля, а стальной промышленность -
тонн стали. Если каждая из них будет производить лишь
и
тонн, то часть продукции будет использоваться в другой отрасли. Для производства
тонн стали требуется
тонн угля, а для производства
тонн угля нужно
тонн стали. Чистый выход будет равен:
тонн угля и
тонн стали. Нам нужно дополнительно производить уголь и сталь, чтобы использовать их в другой отрасли. Обозначим x1 - количество угля, x2 - количество стали. Валовый выпуск каждой продукции найдем из системы уравнений:

Решение: (500000; 100000). Для систематического решения задач расчета межотраслевого баланса находят, сколько угля и стали требуется для выпуска 1 т. каждого продукта.