Смекни!
smekni.com

Научно-технический прогресс и производство (стр. 3 из 5)

Развитие химической индустрии превратилось в один из решающих факторов повышения эффективности общественного производства и ускорения научно-технического прогресса.

Темпы роста химической промышленности всегда опережали темпы роста промышленности в целом.

Значение ускоренного развития химической промышленности в химизации народного хозяйства заключается прежде всего в громадной экономии общественного труда, связанной с относительно меньшей трудоемкостью изготовления продукции. В среднем народнохозяйственная трудоемкость производства единицы валовой продукции химической промышленности на 30—40 % меньше трудоемкости производства единицы продукции в сырьевых отраслях народного хозяйства.

Химизация предоставляет неограниченные возможности для расширения и совершенствования сырьевой базы промышленности, содействует устранению дефицитности натуральных ресурсов. Замена натурального сырья синтетическим дает большой экономический эффект.

Химизация позволяет увеличить выпуск продукции при одновременном повышении ее качества и снижении издержек производства. Химические методы и химические материалы находят применение во всех отраслях промышленности и прежде всего в машиностроении, черной и цветной металлургии, строительной индустрии, лесной и деревообрабатывающей промышленности. Машиностроение является основным потребителем производимых в стране синтетических смол и пластмасс. Все возрастающий процесс замещения пластмассами черных и цветных металлов — одно из важнейших путей технического и экономического процесса в машиностроении. Химия создает не только полноценные заменители природных материалов, но и материалы с заранее заданными свойствами, не существующие в природе. Например, выпускаемый промышленностью сверхтвердый материал боразон не теряет своих режущих свойств даже при температурах, при которых алмаз сгорает. Не дает природа в готовом виде и материалов, так удачно сочетающих в себе эластичность, теплостойкость, прочность, как созданный химиками силиконокремний — органические полимеры, которые применяются, в частности, в авиации и электротехнике.

Внедрение химических методов и материалов в производство ведет к серьезным преобразованиям в технологии, улучшает и ускоряет технологические процессы, способствует дальнейшему совершенствованию конструкций машин, улучшает условия труда людей. В любой отрасли промышленности химические методы способны переработать отходы и отбросы в ценные продукты. Например, в лесной и деревообрабатывающей промышленности механическими способами удается превратить в изделия, обладающие потребительными свойствами, около 30 % заготовленного леса, тогда как химическая переработка позволяет утилизировать до 98 % всей древесины.

Огромно экономическое значение химизации сельского хозяйства. Химизация не только интенсифицирует сельское хозяйство, делает его высокопродуктивным, но и значительно улучшает и облегчает условия труда земледельца, создает благоприятные условия механизации, сокращает трудовые затраты на производство сельскохозяйственной продукции и повышает ее качество. По расчетам ученых в среднем применение 1 т минеральных удобрений в пересчете на 100 % содержание питательных веществ сберегает в сельском хозяйстве 275 чел. ч.

Рассматривая вопрос экономической эффективности удобрений, прежде всего следует иметь ввиду их агрономическую эффективность — прибавка урожая на единицу площади и в конечном счете их роль в повышении производительности почвы — основного средства сельскохозяйственного производства.

Одной из главных задач в земледелии является не только получение высоких урожаев сельскохозяйственных культур, но также и их сохранение. Эта задача решается применением различных химических веществ (пестицидов), используемых для уничтожения тех или иных вредных организмов в растениеводстве. Расходы на защиту технических культур окупаются за счет сохраненного урожая в 15 - 18 раз.

К основным показателям, характеризующим уровень развития химизации, относятся:

доля продукции химической промышленности в общем объеме промышленного производства;

производство пластических масс и синтетических смол на душу населения;

доля искусственных и синтетических материалов в общем объеме потребленных материалов;

удельный вес химико-технологических процессов — количество продукции, полученной с применением химических методов, по отношению ко всему объему продукции;

доля пластмасс в общем весе конструктивных материалов — вес пластмасс, использованных за год на производство, тонн, к весу металлов, использованных на производство за год, тонн.

Рассматривая основные направления НТП в промышленности, особое внимание следует обратить на совершенствование технологических процессов.

Технология определяет порядок выполнения операций, выбор предметов труда, средств воздействия на них, оснащение производства оборудованием, инструментом, средствами контроля, способы сочетания личностного и вещественных элементов производства во времени и пространстве, отношение производства с окружающей средой.

Выделяются четыре приоритетных направления развития технологий: непрерывная разливка и внепечная обработка стали для получения металла с улучшенными свойствами и особо высокого качества, создание серии технологических лазеров и их применение для резки, сварки, раскроя, плазменная и детонационная технология нанесения упрочняющих, износостойких, антикоррозийных покрытий, технология с применением высоких давлений, вакуума, импульсных воздействий для синтеза новых материалов, газо- и гидроэкструзии изделий и фасонных профилей, формообразования и калибровки крупногабаритных изделий сложной формы.

Биотехнология — использование биологических процессов и агентов для целей производства.

Первоначально она была связанна лишь с отраслями агрокомплекса (хлебопечение, сыроварение, силосование кормов), затем включила промышленный микробиологический синтез физиологических активных препаратов: антибиотики, кормовой белок, витамины, стала использоваться при очистке сточных вод, извлечении металлов из руд и отходов для повышения нефтеотдачи пластов, получения биотоплива. Новый этап биотехнологии связан с генной инженерией. Особое значение имеет создание и освоение биологически активных веществ и лекарств для ранней диагностики и лечения заболеваний, новых технологий получения ценных пищевых, химических и других продуктов, технологий глубокой и эффективной переработки сельскохозяйственных, промышленных отходов для получения биогаза и удобрений.

Из-за несовершенства хозяйственного механизма безотходные технологии использовались до сих пор недостаточно. По ним перерабатывалась лишь половина мяса и молока. Коэффициент полезного использования стального проката на протяжении нескольких десятков лет составляет 0,7 (30 % металла идет в стружку). Современная технология позволяет увеличить его до 0,9—0,95. Замена резания металлов штамповкой, неэкономических отливок — сварными конструкциями экономит 25 % металла.

Особенно эффективна замена механической обработки материалов экономичными технологиями — прессованием, объемной штамповкой, лазерно-лучевыми технологиями. Непрерывные процессы изготовления проката повышают коэффициент использования металла до 0,95.

Перевод 1 млн т проката черных металлов с обработки резания на точное литье сберегает 200 тыс. т металла и труд 20 тыс. рабочих.

На современном этапе развития техники одним из важнейших направлений является гибкая интеграция производства (ГИП). Основу ГИП составляют:

централизация обработки деталей и сборки узлов;

гибкость оборудования и организации производства;

интеграция управления на базе электронизации и кооперирования.

Централизация обработки — это максимально полная обработка детали, сборка узла на одном рабочем месте, на одном станке. Если автоматические линии являются специальным оборудованием и нашли применение только в массовом производстве, то обрабатывающий центр (ОЦ) — универсальным оборудованием, применяемым как в массовом, так и в единичном производстве.

При использовании централизации обработки следует выполнять следующие привила:

конструкция деталей должна удовлетворять требованиям их обработки на ОЦ;

сегодня обрабатывать нужно те детали, которые завтра пойдут на сборку;

начатая в производстве обработка деталей, сборка узлов должна быть завершена на одном рабочем месте.

Гибкость производства — это возможность быстрого перехода к производству новых изделий, обработки различных деталей на одном и том же оборудовании с небольшой остановкой оборудования для переналадки или без нее. Гибкость — это такая организация производства, при которой можно повторно использовать если не все, то значительную долю существующих основных фондов, когда приходится полностью менять номенклатуру продукции.

Следует отметить, что гибкость производства присуща любому производству и оборудованию.

Третий компонент комплексной автоматизации — интеграция. Интеграция является более высокой ступенью ее развития на основе компьютеризации. Интеграция производства начинается с объединения различных функциональных составляющих производства в различные автоматизированные системы управления.

Полная интеграция производства не означает создание предприятия как какой-то единой автоматической машины; это будут отдельные машины, которые, оставаясь автономными, будут работать фактически как одна машина, управляемая единым комплексом автоматических систем управления.