Смекни!
smekni.com

Основные понятия статистики (стр. 10 из 12)

Формулы (1.66) и (1.67) получены исходя из того, что в основной формуле выручки количество товара - первый фактор, а цена - второй. Если эти факторы поменять местами, то выручка и ее общее изменение останутся прежними, но изменения от каждого фактора будут другими.

Так, если основываться на формуле выручки вида Q = pq, то ее изменение за счет цены, как первого фактора, по аналогии с формулой (1.66) будет равняться

p = (ip –1) Q0 , (1.68)

Изменение выручки за счет количества товара, как второго фактора, по аналогии с формулой (1.67) определится по выражению

q= ip(iq –1) Q0. (1.69)

Суммарное по факторам изменение выручки по-прежнему равняется ее общему изменению.

В рассмотренном примере, считая цену первым фактором и применяя формулу (1.68), определяем, что изменение выручки за счет повышения цены равняется

p = (1,45-1)8 = 3,6 млн. руб.

Изменение выручки за счет увеличения количества проданного товара, как второго фактора, по формуле (1.69) равно

q = 1,45(1,05-1)8 = 0,58 млн. руб.

Общее изменение выручки осталось прежним: 3,6+0,58=4,18 млн. руб.

В связи с различными факторными изменениями выручки в зависимости от места фактора в ее основной формуле, встает вопрос, какую же формулу выручки применять для анализа. Это зависит от конкретной экономической ситуации. Если увеличение выручки обеспечивается главным образом за счет роста количества проданного товара при более или менее стабильной цене, то товар считается первым фактором, а цена — вторым. Если же увеличение выручки достигается в основном повышением цен без увеличения и даже при снижении количества проданного товара, то цена считается первым фактором, а товар — вторым.

Значит, очередность анализа по факторам вытекает из вида формулы сложного явления. Так, если материальные затраты М на выпуск продукции определяются как произведение ее количества q, удельного расхода материала т и его цены р, то типологическая формула имеет вид

М = qmp, (1.70)

а трехфакторная мультипликативная модель запишется как

M1=iqimipM0. (1.71)

Следовательно, можно записать следующие формулы факторных изменений материальных затрат


Меняя факторы местами в основной формуле (1.70), можно получать другие факторные формулы. Но всегда общее изменение материальных затрат, равное сумме факторных изменений, будет одинаковым.

Подобные мультипликативные модели можно формировать для неограниченного числа факторов.

5.2 Простые общие индексы

Индекс становится общим, когда в основной формуле показывается неоднородность изучаемого явления. Например, анализируется изменение выручки от продаж не одного, а всех или нескольких видов товаров. Тогда общий индекс количества проданных товаров будет равен

=
(1.72)

Аналогично по ценам

=
(1.73)

Аналогично по выручке

=
=
(1.74)

Однако здесь двухфакторная мультипликативная модель не может выглядеть как в случае индивидуальных индексов, потому что произведение простых общих индексов количества товаров и цен не равно общему индексу выручки. То есть

и убеждаемся в этом неравенстве, подставив значения общих индексов из формул (1.72)—(1.74).

В самом деле:

Как видим, в числителе и знаменателе левой части произведения сумм, а в числителе и знаменателе правой части сумма произведений и они, конечно, не адекватны.

Это вызвано тем, что записанные выше общие индексы простых явлений не отражают взаимосвязи между собой в сложном явлении и потому считаются не объективными. Поэтому они помечены штрихом и названы простыми общими индексами.

5.3 Агрегатные общие индексы

Объективность общим индексам придает их запись в агрегатном виде, предложенная испанцем Ласпейресом и немцем Пааше.

Агрегатный общий индекс Ласпейреса для количества товаров как первого фактора выручки определяется по формуле

=
(1.75)

Аналогично можно записать агрегатный общий индекс Ласпейреса для цен как первого фактора выручки, то есть

=
(1.76)


В формулах Ласпейреса знаменатели по существу одинаковые, представляя собой выручку базисного периода, а числители разные. В формуле (1.75) это отчетная выручка в базисных ценах (количесгво товаров отчетное, а цены — базисные), в формуле (1.76) наоборот — базисная выручка в отчетных ценах (цены отчетные, а количество товаров — базисное).

Агрегатные общие индексы Пааше применяются ко вторым факторам мультипликативных моделей. Поэтому такой индекс для цен как второго фактора выручки определяется по формуле

=
(1.77)

Аналогично можно записать агрегатный общий индекс Пааше для количества товаров как второго фактора выручки, то есть

=
(1.78)

В формулах Пааше числители по существу одинаковые, представляя собой выручку отчетного периода, а знаменатели аналогичны числителям формул Ласпейреса.

Для облегчения запоминания студентами формул Ласпейреса и Пааше предлагаю обратить внимание на букву «ш» в слове «Пааше», которая напоминает «111» - так обозначены отчетные периоды в общей формуле (две единицы – в числителе, а одна – в знаменателе). В формуле же Ласпейреса – три нуля (наоборот к формуле Пааше).

Произведения количественного индекса Ласпейреса и ценового индекса Пааше, а также ценового индекса Ласпейреса и количественного индекса Пааше дают общий индекс выручки.

Однако вид этих формул показывает, что однофакторные индексы Ласпейреса и Пааше не равны между собой. То есть не равными являются количественные индексы Ласпейреса и Пааше и ценовые. Американский экономист Гершенкрон обширными расчетами установил, что по одному и тому же фактору индекс Ласпейреса всегда больше индекса Пааше и это открытие названо эффектом Гершенкрона.

Но в статистике должно быть одно значение индекса, поэтому американский экономист Фишер предложил применять среднюю геометрическую величину из индексов Ласпейреса и Пааше, определяя ее по формулам:

для количества товаров

=
(1.79)

для цен

=
(1.80)

Вместе с тем, проведенные Ворониным В.Ф. многочисленные расчеты показали, что для целей статистики вполне можно применять не среднюю геометрическую, а простую среднюю арифметическую величину из индексов Ласпейреса и Пааше, определяя ее по формулам:

для количества товаров

=
(1.81)