Смекни!
smekni.com

Основные понятия статистики (стр. 3 из 12)

1. Если имеются дополнительные данные по числителю дробной размерности, то применяется средняя гармоническая.

2. Если имеются дополнительные данные по знаменателю дробной размерности, то применяется средняя арифметическая.

3. Если неясно, к числителю или знаменателю относятся дополнительные данные, то поочередно применяются средняя гармоническая и арифметическая, а затем определяется средняя между ними величина.

Для иллюстрации правил решим задачу: 4 фирмы выпускают одинаковую продукцию при себестоимостях в руб/ед.: Si = 5, 3, 4, 6, а доли фирм равны соответственно di = 0,3; 0,2; 0,4; 0,1. Определить среднюю себестоимость продукции.

Для решения примера используем вышеизложенные правила.

1. Если доли фирм относятся к текущим затратам (числитель показателя себестоимости), то ее среднее значение определяем по формуле (1.16) как среднюю гармоническую величину

= 1/ (0,3/5 + 0,2/3 + 0,4/4 + 0,1/6) = 4,1 (руб./ед.)

2. Если доли фирм относятся к количеству выпущенной продукции (знаменатель показателя себестоимости), то ее среднее значение находим по формуле (1.14) как среднюю арифметическую величину

= 5*0,3 + 3*0,2 + 4*0,4 + 6*0,1 = 4,3 (руб./ед.)

3. Если не сказано, к чему относятся доли фирм, то в дополнение к выполненным расчетам определяем среднюю себестоимость как простую среднюю величину из полученных результатов. То есть

= (Sгм + Sар)/2 = 4,2 (руб./ед.)

Таким путем рассчитываются средние значения и других показателей с дробной размерностью.

2.4 Особые виды степенных средних величин

Разновидностью простой средней арифметической служит средняя хронологическая величина, когда имеются моментные статистические величины на определенную одинаковую дату, например, на 1-е число каждого месяца в году. Формула средней хронологической теоретическому выводу не поддается и записывается приближенно в виде

. (1.17)

где Х1 и Xn — первое и последнее значения статистической величины; Xi — промежуточные значения; n — общее число значений.

По такой формуле бухгалтерия определяет среднегодовую стоимость основных фондов, учитывая ее значения на 1-е число каждого месяца. При этом n = 13, т. к. 1-е января фиксируется дважды: у отчетного и следующего за отчетным года. Аналогично коммерческие банки определяют среднегодовую сумму вкладов и выданных кредитов. Если учет квартальный, то n = 5.

Средняя геометрическая величина получается при подстановке в формулу (1.11) m=0:

=
=

Для раскрытия неопределенностей этого вида прологарифмируем обе части формулы (1.11):

.

Подставляя в правую часть равенства m=0, получаем неопределенность вида

. Используя правило Лопиталя и дифференцируя отдельно числитель и знаменатель по переменной m, получаем

.

Следовательно, при m=0


.

Потенцируя, находим

. (1.18)

Формула (1.18) является формулой средней геометрической простой, а если использовать частоты f, получим формулу средней геометрической взвешенной:

=
взвешенная, (1.19)

где П—символ произведения.

Средняя геометрическая величина применяется, если задана последовательность индексов динамики, указывающих, например, на изменение уровня производства каждого последующего года по сравнению с предыдущим.

Рассчитанные для одних и тех же данных различные средние величины оказываются неодинаковыми. Здесь действует правило мажорантности средних величин (впервые сформулировал профессор А. Я. Боярский), согласно которому с ростом показателя степени m в общих формулах увеличивается и средняя величина. То есть

<
<
<
<

Это правило частично подтвердилось расчетом средней себестоимости продукции, где средняя гармоническая получилась равной 4,1 руб./ед., а средняя арифметическая 4,3 руб./ед. Если рассчитать еще и среднюю геометрическую взвешенную, то она будет равной 4,2 руб./ед.

2.5 Структурные средние

Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен.

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака больше медианного уровня, а у другой – меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

, (1.20)

где XMe – нижняя граница медианного интервала;

X – его величина (размах);

f/2 – половина от общего числа величин;

– сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;

fMe – число наблюдений или объем взвешивающего признака в медианном интервале.

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

, (1.21)

где ХMo– нижнее значение модального интервала;

fMo – число наблюдений или объем взвешивающего признака в модальном интервале;

fMo-1 – то же для интервала, предшествующего модальному;

fMo+1 – то же для интервала, следующего за модальным;

X – величина интервала изменения признака в группах.

Очевидно, что в формуле (1.20) и (1.21) можно заменить частоты f на доли d, так как

, а
можно вынести за скобки как в числителе, так и в знаменателе и сократить.

Показателями типа медианы, характеризующими структуру рядов распределения признака, являются квартили (делят ряд на 4 равные части), квинтили (на 5), децили (на 10), перцентили (на 100).

2.6 Средние отклонения от средних величин

Каждая статистическая величина от среднего значения отличается (отклоняется) по-разному и в любую сторону: со знаком плюс или минус. Поэтому для оценки типичности полученной средней величины надо знать величину среднего отклонения совокупности от нее. Поскольку неизбежны и отрицательные отдельные отклонения, необходима нейтрализация знака минус, иначе среднего отклонения не получится. Этого можно достичь двумя способами: принять отрицательные отклонения по модулю или возвести их во вторую степень (в квадрат).

При первом способе образуется среднее линейное отклонение, а при втором — среднее квадратическое. В связи с тем, что средние величины могут быть простыми и взвешенными, аналогичными могут быть и средние отклонения. Поэтому среднее линейное отклонение определяется по формулам

простое; (1.22)

взвешенное. (1.23)

В этих формулах прямые скобки означают, что разности или отклонения берутся по модулю, то есть без учета знака. Если ошибочно вместо прямых скобок принять обычные круглые, то получится Л=0.