Смекни!
smekni.com

Помилки вибіркового спостереження (стр. 2 из 4)

Чисельність вибірки залежить від таких факторів:

◊ варіації досліджуваної ознаки. Чим більша варіація, тим більшою має бути чисельність вибірки і навпаки;

◊ розміру можливої граничної похибки вибірки. Чим менший розмір можливої похибки, тим більшою має бути чисельність вибірки. За існуючим правилом, якщо похибку потрібно зменшити в три рази, то чисельність вибірки збільшують в дев’ять раз;

◊ значення ймовірності, з якою гарантуватимуть результати вибірки. Чим більша ймовірність, тим більша має бути чисельність вибірки;

◊ способу вибору одиниць у вибіркову сукупність.

Визначення необхідної чисельності вибірки залежить від алгебраїчного перетворення формул граничної похибки вибірки при різних способах відбору.

Для власне випадкової і механічної вибірки виведення формул необхідної чисельності вибірки здійснюється в такий спосіб. З формули граничної похибки вибірки для середньої при повторному відборі

потрібно визначити чисельність вибірки n. Для цього обидві частини даного рівняння підносимо до квадрата і отримуємо
, звідки необхідна чисельність вибірки
.

Дана формула є математичним підтвердженням залежності чисельності вибірки від граничної похибки, величини коефіцієнта довіри t і варіації (дисперсії).

Так само виводять формули необхідної чисельності вибірки в разі обчислення частки ознаки при повторному і безповторному відборах (табл. 1.3).

табл. 1.3

Чисельність вибірки n.

Спосіб відбору Визначення середньої Визначення частки
Повторний
Безповторний

Коли відбір одиниць здійснюється з окремих типово однорідних груп, виділених за відповідною ознакою, варіації групових середніх немає, і похибка типової вибірки залежить від середньої величини з групових дисперсій. А тому при типовому відборі в формулах похибок вибірки замість загальної дисперсії слід використовувати середню з групових

для середньої
- для частки.

Отже, граничну похибку вибірки при типовому відборі розраховують за допомогою певних формул (табл. 1.4).

табл. 1.4

Гранична похибка вибірки ∆.

Спосіб відбору Визначення середньої Визначення частки
Повторний
Безповторний

Знайти необхідну чисельність вибірки за типовим відбором можна в такий спосіб. Спочатку визначають загальну чисельність вибірки за формулою

- для повторного відбору і
- для безповторного відбору, після чого здійснюється відбір одиниць кожної групи методом, який враховує чисельність одиниць у кожній групі і варіацію досліджуваної ознаки.

Найпоширенішим способом серійного відбору є такий, за якого утворені в генеральній сукупності і відібрані вибіркою серії (гнізда) однакові за обсягом. Очевидно, що в разі серійної вибірки, яка передбачає суцільне спостереження одиниць у відібраних серіях, похибка вибірки залежатиме не від числа обстежених одиниць сукупності, а від кількості відібраних серій. Похибка вибірки залежатиме не від варіації ознаки в усій сукупності, а від варіації серійних середніх, яка вимірюється міжсерійною (між груповою) дисперсією δ2 (табл. 1.5), показниками: S – число серій у генеральній сукупності; s – число відібраних серій.

табл. 1.5

Гранична помилка ∆ серійної вибірки.

Спосіб відбору Визначення середньої Визначення частки
Повторний
Безповторний

Необхідну чисельність вибірки в разі серійного відбору визначають як відбір певної кількості серій, які забезпечують з відповідною ймовірністю потрібну точність результатів дослідження.

Для повторного відбору необхідна чисельність вибірки

, а для безповторного -
.

У статистичні практиці вибіркове спостереження з великих масивів генеральної сукупності часто здійснюють у вигляді комбінованої, ступінчастої або кілька фазної вибірки. Вибіркова сукупність у разі комбінованої вибірки формується внаслідок ступінчастого відбору.

Загальна похибка для комбінованої вибірки складається з похибок, які можливі на кожному ступені, і визначається як корінь квадратний з квадратів похибок відповідних вибірок. Якщо серійну вибірку скомбінувати власне випадковою або механічною, то гранична похибка вибірки

Під час застосування комбінованої вибірки обов’язково потрібно знати склад генеральної сукупності, а також скласти обґрунтовану схему відбору одиниць за ступенями.

У разі моментального методу спостереження гранична похибка частки визначається як для звичайної повторної власне випадкової вибірки.

Вибір моментів здійснюють за схемою механічної вибірки або за схемою власне випадкової вибірки за таблицею випадкових чисел. Другий спосіб доцільно застосовувати в тих випадках, коли спостереження має бути для об’єкта несподіваним, аби не порушувати його звичайний трудовий ритм.

Визначають чисельність моментних спостережень за формулою похибки власне випадкової повторної вибірки. Відбір у моментних спостереженнях завжди безповторний, однак формулу безповторного відбору застосовувати не можна, оскільки чисельність генеральної сукупності моментів роботи визначити неможливо, вона нескінченна, якщо момент спостереження досить короткий. А тому необхідна чисельність моментів спостереження

,

або якщо довірчу ймовірність Р = 0,954, тобто коефіцієнт довіри t = 2, тоді

.

В разі малих вибірок розподіл вибіркових середніх і похибок вибірки відрізняється від нормального. Тому для оцінки результатів малої вибірки використовують дещо змінені формули. Середня похибка малої вибірки

, де
; n – 1 – число ступенів вільності варіації, які вказують на кількість різних можливих значень варіантів з їх середньою арифметичною.

Аби зв’язати середню похибку малої вибірки з граничною, враховують те, що в разі недостатньо великого обсягу вибірки стандартизована різниця між вибіркою і генеральною середньою має розподіл Стьюдента, а не нормальний. У. Стьюдент винайшов закон розподілу відхилень вибіркових середніх від генеральної середньої для малих вибірок і склав спеціальні таблиці, в яких наведено значення t при невеликому обсязі вибірки.

Малі вибірки використовують переважно для оцінки суттєвості (достовірності) різниць двох вибіркових середніх.

Для оцінки відмінності двох залежних вибіркових середніх застосовують середню різницю.

На основі теорії малої вибірки оцінюють точність вибіркової середньої, тобто визначають ймовірність того, що різниця між вибірковою і генеральною середньою не перевищує задану абсолютну величину.


Задача №28.

Визначити середню місячну заробітну плату робітника фірми в цілому методом середньої арифметичної простої і зваженої величини, середньої гармонічної зваженої.

Структурні підрозділи Фонд заробітної плати за місяць, тис.грн. Кількість робітників
«Наталка» 21 30
«Геркулес» 7,44 12
«Світанок» 4,25 5
«Морозко» 5,6 16
Разом 38,29 63

Яка із середніх величин найбільш реально відображає середню заробітну плату одного працівника фірми?

Розв’язання.

Знаходимо середню місячну заробітну плату для одного робітника кожного підрозділу фірми. Фонд заробітної плати ділимо на кількість працівників. Дані заносимо до таблиці. Таким чином ми визнаємо, що фонд заробітної плати – це добуток кількості робітників (частота) на середню заробітну плату (варіанта).