Для интервального ряда распределения мода рассчитывается по следующей формуле
где xMo — нижняя граница модального интервала; iMo — величина модального интервала; fMo, fMo−1, fMo+1 — частота модального, предшествующего модальному и последующего за модальным интервала.
Модальным интервалом по значению числа видов производимой продукции является интервал 8-10, т.к. наибольшее число предприятий (14) находится в данном интервале.
Мо = 8 + 2 · (14 – 11)/((14 – 11) + (14 – 13)) = 9,5
Наиболее часто встречающееся значение числа видов производимой продукции является 9,5.
Медианой называется варианта, которая находится в середине вариационного ряда по частоте. Медиана делит ряд пополам, по обе стороны от нее находится одинаковое количество единиц совокупности. Медиана показывает количественную границу варьирующего признака, которую достигла половина членов совокупности.
В интервальном ряду распределения медиана рассчитывается следующим образом
где xMo — нижняя граница медианного интервала;
iMo— величина медианного интервала;
SMe−1 — частота, накопленная до медианного интервала;
fMе— частота медианного интервала.
Для расчета медианы определяются накопленные частоты. Медианным является интервал, на который приходится половина предприятий, т.е. интервал 5 – 7.
Ме = 5 + 2 · (60/2 – 11)/11 = 8,45.
Половина предприятий выпускает 8,45 видов производимой продукции.
При определении средней величины в интервальном ряду с открытыми интервалами прежде всего необходимо закрыть интервалы.
Используем формулу средней арифметической взвешенной
где x — значения (варианты) признака; n — число вариантов (число наблюдений), из которых рассчитывается средняя; f — статистический вес (число повторений значения признака).
Х = (2,5 · 11 + 6 · 11 + 9 · 14 + 12 · 13 + 15 · 5 + 18 · 6)/60 = 9,31
Таблица 5.2
Число видов производимой колбасной продукции | Число предприятий в группе | Суммарный объём выпуска колбасной продукции по группе предприятий, Q, т | Средняя энергоёмкость 1 т продукции по группе предприятий, E,ГДж/ т | Средняя себестоимость 1 т продукции по группе предприятий, С тыс. руб./ т | Q·E | Q·C |
До 4 | 11 | 580 | 6,2 | 86 | 3596 | 49880 |
5 – 7 | 11 | 520 | 6,5 | 91 | 3380 | 47320 |
8 – 10 | 14 | 610 | 6,3 | 87 | 3843 | 53070 |
11 – 13 | 13 | 480 | 6,6 | 93 | 3168 | 44640 |
14 – 16 | 5 | 210 | 6,9 | 96 | 1449 | 20160 |
17 и более | 6 | 300 | 7,1 | 95 | 2130 | 28500 |
Σ | 2700 | 17566 | 243570 |
При определении средней в целом по совокупности предприятий энергоёмкость продукции и средней себестоимости 1 т колбасных изделий по совокупности предприятий используем формулу средней арифметической взвешенной
где x — значения (варианты) признака; n — число вариантов (число наблюдений), из которых рассчитывается средняя; f — статистический вес (число повторений значения признака).
Средняя в целом по совокупности предприятий энергоёмкость продукции
Еср = (580 · 6,2 + 520 · 6,5 + 610 · 6,3 + 480 · 6,6 + 210 · 6,9 + 300 · 7,1)/2700 = =6.505926 ГДж/ т.
Средняя себестоимость 1 т колбасных изделий по совокупности предприятий
Сср = (580 · 86 + 520 · 91 + 610 · 87 + 480 · 93 + 210 · 9,6 + 300 · 95)/2700 = =90.21111 тыс. руб./ т.
Задание №10
По данным табл. 10: 1) графически изобразить зависимость результирующего показателя от каждой факторной величины; 2) построить уравнения парной регрессии результирующего показателя от каждого отдельного фактора; 3) рассчитать выровненные значения результирующего показателя по полученным уравнениям регрессии; 4) рассчитать характеристики тесноты (силы) корреляционной зависимости результата от каждого из факторов в отдельности и от совокупности обоих факторов. Сделать выводы по результатам расчётов.
Таблица 10
Город | Среднедушевое потребление деликатесной мясной продукции в год, кг/ чел. | Среднегодовая цена продукции по городу, руб./кг | Среднедушевой доход одного жителя города за месяц, тыс. руб./ чел. |
А | 3,5 | 215 | 4,6 |
Б | 3,8 | 230 | 4,8 |
В | 6,2 | 265 | 6,7 |
Г | 4,6 | 205 | 5,1 |
Д | 5,7 | 200 | 4,3 |
Е | 4,1 | 220 | 5,0 |
Ж | 3,3 | 225 | 4,0 |
З | 4,9 | 230 | 6,1 |
И | 5,2 | 250 | 6,4 |
К | 4,0 | 245 | 5,2 |
Решение:
Y | X | Z | Y-Yср | (Y-Yср)2 | Х-Хср | (х-хср)2 | Z-Zср | (Z-Zср)2 | (Y-Yср) * (Х-Хср) | (Y-Yср) * (Z-Zср) |
3.5 | 215 | 4.6 | -1.03 | 1.0609 | -13.5 | 182.25 | -0.62 | 0.3844 | 13.905 | 0.6386 |
3.8 | 230 | 4.8 | -0.73 | 0.5329 | 1.5 | 2.25 | -0.42 | 0.1764 | -1.095 | 0.3066 |
6.2 | 265 | 6.7 | 1.67 | 2.7889 | 36.5 | 1332.25 | 1.48 | 2.1904 | 60.955 | 2.4716 |
4.6 | 205 | 5.1 | 0.07 | 0.0049 | -23.5 | 552.25 | -0.12 | 0.0144 | -1.645 | -0.0084 |
5.7 | 200 | 4.3 | 1.17 | 1.3689 | -28.5 | 812.25 | -0.92 | 0.8464 | -33.345 | -1.0764 |
4.1 | 220 | 5 | -0.43 | 0.1849 | -8.5 | 72.25 | -0.22 | 0.0484 | 3.655 | 0.0946 |
3.3 | 225 | 4 | -1.23 | 1.5129 | -3.5 | 12.25 | -1.22 | 1.4884 | 4.305 | 1.5006 |
4.9 | 230 | 6.1 | 0.37 | 0.1369 | 1.5 | 2.25 | 0.88 | 0.7744 | 0.555 | 0.3256 |
5.2 | 250 | 6.4 | 0.67 | 0.4489 | 21.5 | 462.25 | 1.18 | 1.3924 | 14.405 | 0.7906 |
4 | 245 | 5.2 | -0.53 | 0.2809 | 16.5 | 272.25 | -0.02 | 0.0004 | -8.745 | 0.0106 |
Сумма | ||||||||||
4.53 | 228.5 | 5.22 | -2.7E-15 | 8.321 | 0 | 3702.5 | -7.1E-15 | 7.316 | 52.95 | 5.054 |
Рассчитаем конечный вид уравнений прямолинейной регрессии по формуле
yx = 1.262 + 0.014x
yz = 0.924 + 0.69z
Из полученных уравнений рассчитаем выровненные значения результирующего показателя
Среднедушевое потребление деликатесной мясной продукции в год,кг/ чел. | Среднегодовая цена продукции по городу, руб./кг | Среднедушевое потребление деликатесной мясной продукции в год, кг/ чел. | Среднедушевой доход одного жителя города за месяц, тыс. руб./ чел. |
4.337 | 215 | 4.102 | 4.6 |
4.551 | 230 | 4.240 | 4.8 |
5.052 | 265 | 5.552 | 6.7 |
4.194 | 205 | 4.447 | 5.1 |
4.122 | 200 | 3.894 | 4.3 |
4.408 | 220 | 4.378 | 5 |
4.480 | 225 | 3.687 | 4 |
4.551 | 230 | 5.138 | 6.1 |
4.837 | 250 | 5.345 | 6.4 |
4.766 | 245 | 4.516 | 5.2 |
Рассчитаем значение нормированного коэффициента корреляции по формуле:
rxy = 0.301669
rzy = 0.647755
Общая классификация корреляционных связей
сильная, или тесная при коэффициенте корреляции r>0,70;
средняя при 0,50<r<0,69;
умеренная при 0,30<r<0,49;
слабая при 0,20<r<0,29;
очень слабая при r<0,19.
Следовательно, связь между Среднегодовой ценой продукции по городу и Среднедушевым потреблением деликатесной мясной продукции в год (rxy = 0,301669) умеренная.
Связь между Среднедушевым доход одного жителя города за месяц и Среднедушевым потреблением деликатесной мясной продукции в год (rzy = 0,647755) средняя.
Критическое значение коэффициента корреляции ккрит=0,72, так как рассчитанные значения меньше критического, предположение о том что зависимость достоверная ложно.
Задание №14
По данным табл. 14 определить: 1) основные параметры вариационного ряда (среднее арифметическое, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение и коэффициент вариации), сделать вывод об однородности совокупности данных и следствии из него; 2) графически изобразить вариационный ряд и определить аналитический вид распределения частот (или частостей); 3) рассчитать теоретические частоты (частости) по предполагаемому аналитическому уравнению и построить полигон распределения теоретических частот (частостей) на предыдущем графике.
Таблица 14
Количество поставщиков основного сырья на предприятие | Число предприятий |
1 | 4 |
2 | 6 |
3 | 10 |
4 | 12 |
5 | 13 |
6 | 11 |
8 | 7 |
9 | 8 |
11 | 5 |
14 | 4 |
Решение:
Среднее арифметическое рассчитаем по формуле среднего арифметического взвешенного:
Среднее линейное отклонение (средний модуль отклонения) от среднего арифметического. Среднее линейное отклонение рассчитывается по формуле: