Отклонение наблюдаемого значения (для каждого наблюдения) ai величины А от среднего арифметического: ai - a. Для определения дисперсии нормального закона распределения ошибок в этом случае пользуются формулой:
Среднеквадратическое отклонение показывает абсолютное отклонение измеренных значений от среднеарифметического. В соответствии с формулой для меры точности линейной комбинации средняя квадратическая ошибка среднего арифметического определяется по формуле:
Коэффициент вариации характеризует относительную меру отклонения измеренных значений от среднеарифметического:
Тогда используя формулы и предварительные расчеты определим основные параметры вариационного ряда:
Среднее арифметическое | 5.8 |
Среднее линейное отклонение | 3.3 |
Дисперсия | 10.31 |
Среднее квадратическое отклонение | 3.210918872 |
Коэффициент вариации | 55.36% |
Проверка однородности совокупности осуществляется по коэффициенту вариации. Так как коэффициент вариации равен 55,36% (больше 33%) то совокупность неоднородна. Существует большой разброс данных или размера выборки мало.
Графически изобразим вариационный ряд:
Аналитическое уравнение
y = 0.0511x3 - 1.2255x2 + 7.8901x - 3.6667
Рассчитаем теоретические частоты
Количество поставщиков основного сырья на предприятие | Число предприятий |
1 | 3.049 |
2 | 7.6203 |
3 | 10.3538 |
4 | 11.5561 |
5 | 11.5338 |
6 | 10.5935 |
8 | 7.1853 |
9 | 5.3306 |
11 | 2.853 |
14 | 6.8151 |
Задание №20
По данным таблицы 20: 1) комплексно проанализировать сложившуюся динамику экономического показателя, рассчитав все его параметры; 2) построить сглаженный динамический ряд; 3) сделать простейшие прогнозы уровня ряда по выявленной тенденции.
Таблица 20
Экономический показатель | Годы | ||||||||
1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | |
Экспорт продукции фирмы, тыс. $ | 800 | 800 | 802 | 800 | 803 | 808 | 810 | 809 | 812 |
Решение:
Абсолютный прирост — разность двух уровней временного ряда, один из которых (исследуемый) рассматривается как текущий, другой (с которым он сравнивается) как базисный. Если сравнивают каждый текущий уровень (yt или y(t)) с непосредственно ему предшествующим (yt-1) или y(t-1)), то получают цепные абсолютные приросты. Если сравнивают уровень yt с начальным уровнем ряда (y0) или иным уровнем, принятым за базу сравнения (yt), то получают базисные абсолютные приросты. Приросты выражаются либо в абсолютных величинах, либо в процентах, в единицах. Темп прироста (в других терминах — темп роста) — отношение прироста исследуемого показателя к соответствующему уровню временного ряда, принятому за базу сравнения:
в случае, когда ведется сравнение с предшествующим периодом, или
когда сравнивается конечный член ряда в n периодов (лет) с начальным. Темп роста (в других терминах — рост или индекс роста) — отношение одного уровня временного ряда к другому, взятому за базу сравнения; выражается в процентах либо в коэффициентах роста.
Цепные показатели:
Год | Экспорт | Абсолютное изменение | Темп роста | Темп прироста | Абсолютное значение 1% прироста |
1998 | 800 | - | - | - | - |
1999 | 800 | 0 | 100 | 0 | 8 |
2000 | 802 | 2 | 100.25 | 0.25 | 8 |
2001 | 800 | -2 | 99.75062 | -0.24938 | 8.02 |
2002 | 803 | 3 | 100.375 | 0.375 | 8 |
2003 | 808 | 5 | 100.6227 | 0.622665 | 8.03 |
2004 | 810 | 2 | 100.2475 | 0.247525 | 8.08 |
2005 | 809 | -1 | 99.87654 | -0.12346 | 8.1 |
2006 | 812 | 3 | 100.3708 | 0.370828 | 8.09 |
Базовые показатели:
Средний темп роста, %. Это средний коэффициент роста, который выражается в процентах:
Средний темп роста равен 100.1863%.
Средний темп прироста
, %. Для расчета данного показателя первоначально определяется средний темп роста, который затем уменьшается на 100%. Его также можно определить, если уменьшить средний коэффициент роста на единицу:Средний темп прироста равен 0,1863%.
Построим сглаженный ряд динамики по методу скользящей средней.
Скользящая средняя - это такая динамическая средняя, которая последовательно рассчитывается при передвижении на один интервал при заданной продолжительности периода. Если, предположим, продолжительность периода равна 3, то скользящие средние рассчитываются следующим образом:
Экономическийпоказатель | Годы | ||||||||
1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | |
Экспорт продукции фирмы, тыс. $ | 800 | 800 | 802 | 800 | 803 | 808 | 810 | 809 | 812 |
Экспорт продукции фирмы, тыс. $ | - | 800.67 | 800.67 | 801.67 | 803.67 | 807.00 | 809.00 | 810.33 | - |
На основании среднего темпа роста сделаем простейшие прогнозы уровня ряда:
Экономическийпоказатель | Годы | ||||||||
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
Экспорт продукции фирмы, тыс. $ | 812 | 813.51 | 815.03 | 816.55 | 818.07 | 819.59 | 821.12 | 822.65 | 824.18 |
Задание №25
По данным табл. 25:
1) определить индивидуальные индексы физического объема;
2) агрегатный индекс физического объема товарной продукции;
3) рассчитать индивидуальные и агрегатный индексы цен;
4) провести факторный анализ изменения объема товарной продукции.
Таблица 25
Продукция | Объём производства за месяц, т | Отпускная цена предприятия, тыс. руб. / т | ||
октябрь 2006 г. | ноябрь 2006 г. | октябрь 2006 г. | ноябрь 2006 г. | |
А | 57 | 50 | 6,9 | 7,3 |
Б | 69 | 61 | 8,1 | 8,2 |
В | 80 | 66 | 7,2 | 7,5 |
Г | 54 | 43 | 7,0 | 7,1 |
Решение:
Индекс физического объема продукции (ФОП) отражает изменение выпуска продукции. Индивидуальный индекс ФОП отражает изменение выпуска продукции одного вида и определяется по формуле
Агрегатный индекс ФОП (предложен Э. Ласпейресом) отражает изменение выпуска всей совокупности продукции, где индексируемой величиной является количество продукции q, а соизмерителем - цена р:
где q1 и q0 - количество выработанных единиц отдельных видов продукции соответственно в отчетном и базисном периодах; p0 - цена единицы продукции (отдельного вида) в базисном периоде.