Смекни!
smekni.com

Средние велиичины в экономическом анализе (стр. 3 из 6)

5. Сумма отклонений значений признака Х от средней арифметической х равна нулю:

Средняя гармоническая

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной. Применяется она тогда, когда необходимые веса (fi) в исходных данных не заданы непосредственно, а входят сомножителем в одни из имеющихся показателей.

Средняя гармоническая простая рассчитывается по формуле

, т.е. это обратная величина средней арифметической простой из обратных значений признака.

Например, бригада токарей была занята обточкой одинаковых деталей в течение 8-часового рабочего дня. Первый токарь затратил на одну деталь 12 мин, второй - 15 мин., третий - 11, четвертый - 16 и пятый - 14 мин. Определите среднее время, необходимое на изготовление одной детали.

На первый взгляд кажется, что задача легко решается по формуле средней арифметической простой:

Полученная средняя была бы правильной, если бы каждый рабочий сделал только по одной детали. Но в течение дня отдельными рабочими было изготовлено различное число деталей. Для определения числа деталей, изготовленных каждым рабочим, воспользуемся следующим соотношением:

все затраченное время

Среднее время, затраченное = --------------------------------------

на одну деталь число деталей

Число деталей, изготовленных каждым рабочим, определяется отношением всего времени работы к среднему времени, затраченному на одну деталь. Тогда среднее время, необходимое для изготовления одной детали, равно:

Это же решение можно представить иначе:

Таким образом, формула для расчета средней гармонической простой будет иметь вид:

Средняя гармоническая взвешенная:

, где Mi=xi*fi (по содержанию).

Например, необходимо определить среднюю урожайность всех технических культур на основании следующих данных (таблица 3):

Таблица 3

Валовой сбор и урожайность технических культур по одному из районов во всех категориях хозяйств.

Культуры Валовой сбор, ц (Mi) Урожайность, ц/га (xi)
ХлопчатникСахарная свеклаПодсолнечникЛьноволокно 97,2601,246,32,6 30,4467,011,02,9
Итого 743,3 Х

Здесь в исходной информации веса (площадь под культурами) не заданы, но входят сомножителем в валовой сбор, равный урожайности, умноженной на площадь Mi=xi*fi, поэтому

, а средняя урожайность будет равна
.

Средняя геометрическая

Средняя геометрическаяприменяется в тех случаях, когда индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризует средний коэффициент роста.

Средняя геометрическаяисчисляется извлечением корня степени и из произведений отдельных значений — вариантов признака х:

где n — число вариантов; П — знак произведения.

Наиболее широкое применение средняя геометрическая получила для определения средних темпов изменения в рядах динамики, а также в рядах распределения.

Средняя квадратическая и средняя кубическая

В ряде случаев в экономической практике возникает потребность расчета среднего размера признака, выраженного в квадратных или кубических единицах измерения. Тогда применяется средняя квадратическая (например, для вычисления средней величины стороны и квадратных участков, средних диаметров труб, стволов и т.п.) и средняя кубическая (например, при определении средней длины стороны и кубов).

Средняя квадратическая простая является квадратным корнем из частного от деления суммы квадратов отдельных значений признака на их число:

,

где x1,x2,…xn- значения признака, n- их число.

Средняя квадратическая взвешенная:

,

где f-веса.

Средняя кубическая простая является кубическим корнем из частного от деления суммы кубов отдельных значений признака на их число:

,

где x1,x2,…xn- значения признака, n- их число.

Средняя кубическая взвешенная:

,

где f-веса.

Средние квадратическая и кубическая имеют ограниченное применение в практике статистики. Широко пользуется статистика средней квадратической, но не из самих вариантов x, и из их отклонений от средней (х —

) при расчете показателей вариации.

Средняя может быть вычислена не для всех, а для какой-либо части единиц совокупности. Примером такой средней может быть средняя прогрессивная как одна из частных средних, вычисляемая не для всех, а только для "лучших" (например, для показателей выше или ниже сред- них индивидуальных).

Структурные средние.

Для характеристики структуры вариационных рядов применяются так называемые структурные средние. Наиболее часто используются в экономической практике мода и медиана.

Мода – значение случайной величины встречающейся с наибольшей вероятностью. В дискретном вариационном ряду это вариант имеющий наибольшую частоту.

В дискретных вариационных рядах мода определяется по наибольшей частоте. Предположим товар А реализуют в городе 9 фирм по цене в рублях:

44; 43; 44; 45; 43; 46; 42; 46;43;

Так как чаще всего встречается цена 43 рубля, то она и будет модальной.

В интервальных вариационных рядах моду определяют приближенно по формуле

,

где

- начальное значение интервала, содержащего моду;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

Место нахождения модального интервала определяют по наибольшей частоте (таблица 4)

Распределение предприятий по численности промышленно - производственного персонала характеризуется следующими данными:

Таблица 4

Группы предприятий по числу работающих, чел Число предприятий
100 — 200 1
200 — 300 3
300 — 400 7
400 — 500 30
500 — 600 19
600 — 700 15
700 — 800 5
ИТОГО 80

В этой задаче наибольшее число предприятий (30) имеет численность работающих от 400 до 500 человек. Следовательно, этот интервал является модальным интервалом ряда распределения.

Введем следующие обозначения:

=400,
=100,
=30,
=7,
=19

Подставим эти значения в формулу моды и произведем вычисления:

Мода применяется для решения некоторых практических задач. Так, например, при изучении товарооборота рынка берется модальная цена, для изучения спроса на обувь, одежду используют модальные размеры обуви и одежды и др.

Медиана - это численное значение признака у той единицы совокупности, которая находится в середине ранжированного ряда (построенного в порядке возрастания, либо убывания значения изучаемого признака). Медиану иногда называют серединной вариантой, т.к. она делит совокупность на две равные части.

В дискретных вариационных рядах с нечетным числом единиц совокупности - это конкретное численное значение в середине ряда. Так в группе студентов из 27 человек медианным будет рост у 14-го, если они выстроятся по росту. Если число единиц совокупности четное, то медианой будет средняя арифметическая из значений признака у двух средних членов ряда. Так, если в группе 26 человек, то медианным будет рост средний 13-го и 14-го студентов.

В интервальных вариационных рядах медиана определяется по формуле: