Итак, типическая средняя может обобщать системные средние для однородной совокупности, или системная средняя может обобщать типические средние для единой, хотя и неоднородной системы.
Так, многолетняя средняя температура в Санкт-Петербурге в первые десятилетия и столетие существования города была значительно ниже; она возрастает медленно, но с ускорением за последнее столетие вследствие как роста самого города и энергопотребления в нем, что повышает температуру воздуха, так и начавшегося и ускоряющегося общего потепления на Земле. Поэтому "типичность" любой средней величины - понятие относительное, ограниченное как в пространстве, так и во времени.
Общие принципы применения средних величин:
1) необходим обоснованный выбор единицы совокупности, для которой рассчитывается среднее значение;
2) при расчете средней величины в каждом конкретном случае нужно исходить из качественного содержания осредняемого признака, учитывать взаимосвязь изучаемых признаков, а также имеющиеся для расчета данные;
3) средние величины должны рассчитываться, прежде всего, по однородным совокупностям. Качественно однородные совокупности позволяют получить метод группировок, который предполагает расчет не только среднего значения, но и системы обобщающих показателей;
4) общие средние (средние для всей совокупности) должны подкрепляться групповыми средними. Например, анализ динамики урожайности отдельной сельскохозяйственной культуры показывает общее по республике снижение урожайности. Однако известно, что урожайность этой культуры зависит от почвенных, климатических, территориальных, экономических и других условий конкретного сельскохозяйственного года и различна в отдельных регионах. Сгруппировав регионы по уровню урожайности каждого года и проанализировав динамику групповых средних, можно обнаружить, что в отдельных группах регионов средняя урожайность либо не изменилась, либо даже возросла, но одновременно возросли удельный вес или число районов с более низкой урожайностью этой сельскохозяйственной культуры. Очевидно, что анализ факторов динамики средних групповых позволяет более полно отразить закономерности изменения урожайности по сравнению с динамикой общего среднего результата.
2. Виды средних величин и сфера их применения
Виды средних величин различаются, прежде всего, тем, какое свойство, какой параметр исходной варьирующей массы индивидуальных значений признака должен быть сохранен неизменным.
В практике статистической обработки материала возникают различные задачи, имеются особенности изучаемых явлений, и поэтому для их решения требуются различные сведения.
Средняя, рассчитанная по совокупности в целом называется общей средней, средние, исчисленные для каждой группы — групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику размера явления, складывающуюся в конкретных условиях данной группы.
Например, статистическое изучение рождаемости и среднего количества детей в семье на территории бывшего СССР проводилось в региональном аспекте (по союзным республикам). Традиционно более высокая рождаемость была в Средней Азии и Закавказье по сравнению с Центральными районами России. Среднее количество детей в семье, исчисленное по каждому региону — это групповые средние, а соответственно исчисленное по всей территории СССР — общая средняя.
Сравнительный анализ групповых и общих средних используется для характеристики социально-экономических типов изучаемого общественного явления. В частности, при изучении рождаемости большое значение имеет характеристика этого процесса по общественным группам населения региона.
Групповые средние используются для изучения закономерности развития общественных явлений. Так, в аналитических группировках анализ групповых средних позволяет сделать вывод о наличии и направлении взаимосвязи между группированным (факторным) признаком и результативном показателем.
Групповые средние широко применяются также при определении имеющихся использованных резервов производства, когда на ряду со средними величинами рассматриваются и индивидуальные значение признака.
Все средние величины делятся на два больших класса:
1) степенные средние; к ним относятся такие известные и часто применяемые виды, как средняя арифметическая величина, средняя квадратическая и средняя геометрическая;
2) структурные средние величины, в качестве которых рассматриваются мода и медиана.
Степенные средние величины исчисляются в двух формах — простой и взвешенной.
Простая средняя величина считается по несгруппированным данным и имеет следующие общий вид:
,
где Xi– варианта (значение) осредняемого признака;
m – показатель степени средней;
n – число вариант (наблюдений).
Взвешенная средняя величина считается по сгруппированным данным, представленным в виде дискретных или интервальных рядов распределения:
,где Xi – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
m – показатель степени средней;
fi – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.
Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек.
Таблица 2.1
№ п/п | Возраст (лет) | № п/п | Возраст (лет) | № п/п | Возраст (лет) | № п/п | Возраст (лет) |
1 | 18 | 6 | 20 | 11 | 22 | 16 | 21 |
2 | 18 | 7 | 19 | 12 | 19 | 17 | 19 |
3 | 19 | 8 | 19 | 13 | 19 | 18 | 19 |
4 | 20 | 9 | 19 | 14 | 20 | 19 | 19 |
5 | 19 | 10 | 20 | 15 | 20 | 20 | 19 |
Средний возраст рассчитаем по формуле простой средней:
Сгруппируем исходные данные. Получим следующий ряд распределения:
Таблица 2.2
Возраст, X лет | 18 | 19 | 20 | 21 | 22 | Всего |
Число студентов | 2 | 11 | 5 | 1 | 1 | 20 |
В результате группировки получаем новый показатель — частоту, указывающую число студентов в возрасте X лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:
Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
· средняя гармоническая, если m = - 1;
· средняя геометрическая, если m → 0;
· средняя арифметическая, если m = 1;
· средняя квадратическая, если m = 2;
· средняя кубическая, если m = 3.
Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности:с увеличением показателя степени т увеличивается и соответствующая средняя величина:
Xгарм≤ Xгеом≤ Xарифм≤ Xквадр≤ Xкуб.
Пользуясь этим правилом, статистика может в зависимости от настроения и желания ее "знатока" либо "утопить", либо "выручить" студента, получившего на сессии оценки 2 и 5. Каков его средний балл?
Если судить по средней арифметической, то средний балл равен 3,5. Но если декан желает "утопить" несчастного и вычислит среднюю гармоническую
то студент остается и в среднем двоечником, не дотянувшим до тройки. Однако студенческий комитет может возразить декану и представить среднюю кубическую величину:
.Студент уже выглядит "хорошистом" и даже претендует на стипендию! И только в том случае, если лентяй провалил оба экзамена, статистика помочь не в состоянии: увы, все средние из двух двоек равны все той же двойке!
Формулы степенных средних величин приведены в табл. 2.3
В формулах средних значений п — это число единиц совокупности (число индивидуальных значений осредняемого признака X); х — индивидуальное значение признака у каждой единицы. Если совокупность объектов распределена по группам разной численности, то х — это значение признака, общее для всей группы; f— численность группы (частота повторения данного значения признака).
Таблица 2.3 Формулы средних величин
Вид степенной средней | Показатель степени(m) | Формулы расчета средней | |
простой | взвешенной | ||
Гармоническая | -1 | m=xf | |
Геометрическая | → 0 | ||
Арифметическая | 1 | ||
Квадратическая | 2 | ||
Кубическая | 3 |
2.1 Степенные средние величины