Средняя гармоническая величина, как и средняя арифметическая может быть простой и взвешенной. Если веса у каждого значения признака равны, то можно использовать среднюю гармоническую простую:
.Однако в статистической практике чаще применяется средняя гармоническая взвешенная:
, гдеm = xf ,она используется, как правило, при расчете общей средней из средних групповых.
Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.
Приведем расчет средней гармонической величины — простой и взвешенной.
Пример. Четыре швеи-надомницы заняты пошивом головных уборов одной модели. Первая швея тратит на изготовление одного головного убора 30 мин, вторая — 40 мин, третья — 50 мин, четвертая — 60 мин. Определим средние затраты времени на пошив одного головного убора при условии, что каждая швея работает по 10 ч в день.
Попытка решить задачу с помощью средней арифметической простой
оказалась бы успешной, если бы каждая надомница шила только по одному головному убору в день. В данном же случае средние затраты времени на пошив одного головного убора можно подсчитать делением общих затрат времени на пошив всех головных уборов (600 + 600 + 600 + 600 = 2400 мин) на количество сшитых головных уборов.
Количество головных уборов, сшитых каждой надомницей, равно:
1) 600/30 = 20 шт.; 2) 600/40 =15 шт.; 3) 600/50 = 12 шт.; 4) 600/60 = 10 шт. Всего 57 изделий.
Средние затраты времени вычислим по формуле средней гармонической взвешенной:
т.е. на пошив одного головного убора тратится в среднем 42 мин.
В качестве веса в этой задаче был принят показатель общих затрат времени на пошив всех головных уборов одной швеей.
Так как в этом примере общие затраты времени у всех надомниц одинаковы, то к аналогичному результату приводит и расчет по формуле средней гармонической простой:
.2.1.3 Средняя геометрическая величина
Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то следует применить геометрическую среднюю величину.
Ее формула такова:
, для простой. , для взвешенной.Основное применение геометрическая средняя находит при определении средних темпов роста. Пусть, например, в результате инфляции за первый год цена товара возросла в 2 раза к предыдущему году, а за второй год еще в 3 раза к уровню предыдущего года. Ясно, что за два года цена выросла в 6 раз. Каков средний темп роста цены за год? Арифметическая средняя здесь непригодна, ибо если за год цены возросли бы в
раза, то за два года цена возросла бы в2,5 х 2,5 = 6,25 раза, а не в 6 раз. Геометрическая средняя дает правильный ответ: √6 - 2,45 раза.
Геометрическая средняя величина дает наиболее правильный по содержанию результат осреднения, если задача состоит в нахождении такого значения признака, который качественно был бы равно удален как от максимального, так и от минимального значения признака. Например, если максимальный размер выигрыша в лотерее составляет миллион рублей, а минимальный - сто рублей, то какую величину выигрыша можно считать средней между миллионом и сотней? Арифметическая средняя явно непригодна, она составляет 500 050 руб., а это, как и миллион, крупный, а никак не средний выигрыш; он качественно однороден с максимальным и резко отличен от минимального. Не дают верного ответа ни квадратическая средняя (707 107 руб.), ни кубическая (793 699 руб.), ни гармоническая средняя (199,98 руб.), слишком близкая к минимальному значению. Только геометрическая средняя дает верный с точки зрения экономики и логики ответ:
Десять тысяч — не миллион, и не сотня! Это, действительно, нечто среднее между ними.Наиболее часто формулу средней геометрической используют для определения средних валютных курсов, эффективности валютных курсов,
реальной эффективности валютных курсов (международная финансовая статистика).
2.1.4 Средняя квадратическая величина
Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной.
Ее формула такова:
, для простой. , для взвешенной.Например, имеются три участка земельной площади со сторонами квадрата: х1= 100 м; х2 = 200 м; х3 = 300 м. Заменяя разные значения длины сторон на среднюю, мы очевидно, должны исходить из сохранения общей площади всех участков. Арифметическая средняя величина (100 + 200 + 300):3 = 200 м не удовлетворяет этому условию, так как общая площадь трех участков со стороной 200 м была бы равна: 3*(200 м)2 =120 000 м2. В то же время площадь исходных трех участков равна: (100 м)2 + (200 м)2 + (300 м)2 = 140 000 м2. Правильный ответ дает квадратическая средняя:
Формула средней квадратической используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения. Так, при расчете показателей вариации среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины.
2.1.5 Средняя кубическая величина
Если по условиям задачи необходимо сохранить неизменной сумму кубов индивидуальных значений признака при их замене на среднюю величину, мы приходим к средней кубической, имеющей вид:
, для простой. , для взвешенной.Средняя кубическая имеет ограниченное применение в практике статистики. Ею пользуются для исчисления средних диаметров труб, стволов и т.п., необходимых для разного рода расчетов, как, например, для определения запасов древесины на складах и на лесных участках.
2.2 Структурные средние величины
Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).
В качестве структурных средних применяют показатели моды и медианы.
Мода и медиана определяются лишь структурой распределения. Поэтому их именуют структурными позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.
2.2.1 Медиана
Медиана (Ме) — величина варьирующего признака, делящая совокупность на две равные части — со значениями признака меньше медианы и со значениями признака больше медианы.
В ранжированном вариационном ряду с нечетным числом единиц совокупности медианой является значение признака у средней в ряду единицы. Медиана не зависит от значений признака, стоящих на краях вариационного ряда.
В интервальном вариационном ряду для нахождения медианы применяется формула:
где XMe- нижняя граница интервала, в котором находится медиана;
f´Me- число наблюдений (или объем взвешивающего признака), накопленноедо начала медианного интервала;
fMe - число наблюдений или объем взвешивающего признака в медианном интервале (в абсолютном или относительном выражении);
i - величина медианного интервала;
- половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении).Примером такого ряда может служить месячная заработная плата рабочих цеха.
Таблица 2.2.1
Порядковый номер рабочего | 1 | 2 | 3 | 4 | 5 | 6 | 7 | итого |
Месячная заработная плата, руб. (x) | 90 | 105 | 148 | 160 | 175 | 220 | 250 | 1148 |
В этом ряду среднее место по размеру заработной платы занимает рабочий сномером 4, получивший 160 руб. Эта величина и есть медиана. Меньше и больше медианы одинаковое число вариантов. При нечетном числе вариантов (п) порядковый номер, которому соответствует медиана, определяется по формуле