Содержание
Сформируйте массив случайных чисел и произведите 30-процентную простую случайную выборку.
По выборочным данным:
1. Постройте интервальный ряд распределения, образовав пять групп с равными интервалами.
2. Исчислите средний объем выпуска товаров и услуг, приходящийся на одно предприятие, а также долю предприятий с объемом выпуска товаров и услуг, более 40 млн. руб.
3. С вероятностью 0,954 определите доверительные интервалы, в которых можно ожидать генеральные параметры : а)средний размер выпуска товаров и услуг одного предприятия; б) долю малых предприятий с объемом выпуска товаров и услуг малыми предприятиями; г) число предприятий с объемом выпуска товаров и услуг более 40 млн. руб.
Подтвердите достоверность полученных оценок расчетом генеральных характеристик. Сделайте выводы.
Решение:
Выберем 30 случайных двузначных чисел:
77, 26, 33, 72, 95, 29, 03, 04, 19, 14, 22, 57, 08, 17, 69, 65 , 68, 70, 02, 30, 23, 58, 52, 85, 73, 93, 34, 98, 62, 45,
В соответствии с этими числами осуществим 30%-ную выборку.
Сл. число (№ предприятия) | Выпуск товаров и услуг, млн. руб. |
77 | 6 |
26 | 30 |
33 | 3 |
72 | 5 |
95 | 7 |
29 | 19 |
3 | 5 |
4 | 3 |
19 | 24 |
14 | 11 |
22 | 41 |
57 | 25 |
08 | 10 |
17 | 5 |
69 | 5 |
65 | 8 |
68 | 4 |
70 | 10 |
2 | 7 |
30 | 17 |
23 | 35 |
58 | 55 |
52 | 35 |
85 | 34 |
73 | 39 |
93 | 8 |
34 | 2 |
98 | 8 |
62 | 20 |
45 | 40 |
Сумма | 521 713 |
Величина интервала
h = (xmax – xmin) / m = (55 – 2) / 5 = 10,6
Границы интервалов:
2 + 10,6 = 12,6
12,6 + 10,6 = 23,2
23,2 + 10,6 = 33,8
33,8 +10,6 = 44,4
44,4 + 10,6 = 55
Интервальный ряд распределения:
Интервал | Частота ni |
(2; 12,6) | 17 |
(12,6;23,2) | 3 |
(23,2; 33,8) | 3 |
(33,8; 44,4) | 6 |
(44,4;55) | 1 |
Средний объем товаров и услуг
= ∑ xi / n = 521 / 30 = 17,4 млн. руб.Число предприятий с объемом товаров и услуг более 40 млн. руб. равно n0=2.
Доля предприятий с объемом товаров и услуг более 40 млн. руб.
n0 / n = 2 / 30 = 0,06
Расчетная таблица:
xi | Xi - | (Xi - )2 |
6 | -11,4 | 129,2 |
30 | 12,6 | 159,6 |
3 | -14,4 | 206,4 |
5 | -12,4 | 152,9 |
7 | -10,4 | 107,5 |
19 | 1,6 | 2,7 |
5 | -12,4 | 152,9 |
3 | -14,4 | 206,4 |
24 | 6,6 | 44,0 |
11 | -6,4 | 40,5 |
41 | 23,6 | 558,5 |
25 | 7,6 | 58,3 |
10 | -7,4 | 54,3 |
5 | -12,4 | 152,9 |
5 | -12,4 | 152,9 |
8 | -9,4 | 87,7 |
4 | -13,4 | 178,7 |
10 | -7,4 | 54,3 |
7 | -10,4 | 107,5 |
17 | -0,4 | 0,1 |
35 | 17,6 | 310,9 |
55 | 37,6 | 1416,3 |
35 | 17,6 | 310,9 |
34 | 16,6 | 276,7 |
39 | 21,6 | 468,0 |
8 | -9,4 | 87,7 |
2 | -15,4 | 236,1 |
8 | -9,4 | 87,7 |
20 | 2,6 | 6,9 |
40 | 22,6 | 512,3 |
521 | 6321,0 |
Среднее квадратическое отклонение
σ = = = 14,5 млн. руб.
Предельная ошибка выборочного среднего (при вероятности 0,954 – t = 2):
Δ = t= 2 * = 1,2
Доверительный интервал для среднего объема товаров и услуг
- Δ < a < + Δ17,4 –1,2 < a < 17,4 + 1,2
16,2 < a < 18,6
Предельная ошибка выборочной доли
Δ = t= 2 * = 0,07
Доверительный интервал для выборочной доли
0,06 – 0,07 < w < 0,06 + 0,07
0 < w < 0,13
Доверительный интервал для общего выпуска товаров и услуг
16,2 * 100 < a < 18,6 * 100
1620 < a < 1860 млн. руб.
Доверительный интервал для числа предприятий с объемом выпуска более 40 млн. руб.
0 * 100 < n0 < 0,13 * 100
0< n0 < 13
Генеральная средняя:= 2312 / 100 = 23,12 млн. руб.
Число предприятий с объемом выпуска более 40 млн. руб. в генеральной совокупности равно:
n0 = 13.
Доля предприятий с объемом выпуска более 40 млн. руб.
w = n0 / N = 13 / 100 = 0,13
Вывод. Средний объем товаров и услуг по 30 предприятиям составляет 17,4 млн. руб. Доля предприятий с объемом товаров и услуг более 40 млн. руб. 6%. Объем товаров и услуг в среднем отклоняется от своего среднего значения на 14,5 млн. руб. С вероятностью 0,954 можно утверждать, что средний объем товаров и услуг заключен между 16,2 и 18,6 млн. руб., а доля предприятий с объемом товаров и услуг более 40 млн. руб. – между 0% и 13%.
На основе 5-процентной пропорционально расслоенной (типической) выборки со случайным отбором единиц в слое получены сведения о вкладах населения района области.
Результаты выборочного наблюдения приведены в таблице
Типы населения | Число вкладов, тыс. ед. | Средний размер вклада, тыс. руб. | Коэффициент вариации вкладов, % |
Городское | 30 | 7 | 12 |
Сельское | 20 | 5 | 21 |
Определите:
1) тесноту связи между типом населения и средним размером вклада, исчислив эмпирическое корреляционное отношение;
2) с вероятностью 0,954 доверительные интервалы, в которых можно ожидать: а) средний размер вклада всего населения района области; б) общую сумму вкладов населения района;
3) как изменится точность средней и предельной ошибок выборки, если предположить, что приведенные данные получены в результате простой случайной бесповторной выборки. Сделайте выводы.
Решение:
1.
Расчетная таблица:ni | xi | Vi | σi | Di | Dini | Xini | Xi - | (Xi - )2 | (Xi - )2ni |
30 | 7 | 12 | 0,84 | 0,7056 | 21,168 | 210 | 0,8 | 0,6 | 19,2 |
20 | 5 | 21 | 1,05 | 1,1025 | 22,05 | 100 | -1,2 | 1,4 | 28,8 |
50 | 43,218 | 310 | 48 |
Коэффициент вариации
V = σ /
Отсюда среднее квадратическое отклонение
σ = VВнутригрупповая дисперсия
Dвн = ∑ Dini / ∑ ni = 43,218 / 50 = 0,864
Выборочное среднее
= ∑ xini/ ∑ni = 340 / 50 = 6,2Межгрупповая дисперсия
Dмеж = ∑ (Xi - )2 ni / ∑ ni = 48 / 50 = 0,96
Общая дисперсия
D = Dвн + Dмеж = 0,864 + 0,96 = 1,824
Среднее квадратическое отклонение
σ = = = 1,35
Эмпирическое корреляционное отношение
η = = = 0,725
2.Средняя ошибка
μ = σ / = 1,35 / = 0,19Предельная ошибка
Δ = tμ = 2 * 0,19 = 0,38,
где t = 2 (при вероятности 0,954).
Доверительный интервал для средней суммы трат
- Δ < a < + Δ,6,2 – 0,38 < a < 6,2 + 0,38
5,82 < a < 6,58
Доверительный интервал для общей суммы трат
5,82 * 500 < a < 6,2 * 500руб.
2910,0< a < 3100,0руб.
1. Средняя ошибка для бесповторной выборки
μ = = = 0,18